Commodity Memory for a High Performance World: The View from Samsung

By Nicole Hemsoth

February 21, 2012

As CPUs get ever more powerful, their hunger for data is outstripping the ability of memory systems to feed them. This is especially true in high performance computing, where memory capacity is often constrained by cost, and more recently, energy consumption. With larger supercomputers now incorporating upwards of hundreds of terabytes of main memory, and often with multiple terabytes of flash storage, this challenge will continue to grow.

As one of the world leaders in memory solutions, Samsung Semiconductor has been a key supplier of DRAM and NAND components that end up in high performance computing systems. Dr. Byungse So, who heads the Memory Product Planning & Application Engineering team at Samsung, shares his thoughts about the memory technologies needed by performance-minded users today and what might come next.

HPCwire: The memory wall is perhaps one of the biggest impediments in high performance computing today. What is the main reason that DRAM performance has failed to keep pace with processor performance?

Byungse So: In current system architectures, the CPU always needs high bandwidth and high density memory with low cost to keep feeding data to the computing engine. Therefore system memory has typically been a module-based commodity solution using multiple standard DRAM components. Due to its cost-driven design, system performance is compromised. It is time to shift gears by switching from cost-optimized to performance-optimized designs via application specific memory.

HPCwire: So what types of innovations will be needed? Are there DRAM technologies on the horizon that promise to do this?

So: Samsung has been exploring ways of narrowing the gap. Short term, Samsung will continue to provide the highest speed system and graphic memory. In the long run, Samsung will be investigating new interface technologies to meet high bandwidth requirements aimed at double-digit performance improvements over DDR3. To make this happen, close collaboration with CPU producers, platform builders as well as system users, is required.

HPCwire: Memory capacity can be an additional impediment to performance. Given the need for terabytes of memory for some HPC applications and the expense that entails, is there a way to build reasonably-priced systems that can support big memory applications?

So: Samsung has been leading the market with the highest capacity memory solutions and is already providing solutions which allow building terascale system memory for a single dual-processor system. Combined with the most advanced production process, Samsung will keep investigating how new stacking technologies including 3DS — 3D-Stacking –can allow adequate memory support of even most capacity-hungry systems.

HPCwire: The commodity DRAM business is well known for being rather unforgiving to suppliers, with some firms like OCZ exiting the market and others like Qimonda eventually going bankrupt. Why is the DRAM business so precarious and how has Samsung managed to maintain its viability in this segment?

So: DRAM as commodity memory has been under continuous pressure from its primary users, that is, the PC and notebook market, to continuously lower its cost. This enormous cost pressure has kept a number of suppliers in the red for a long time, ultimately pushing some suppliers out of the market, while also leading to designs compromising between cost and performance. Samsung’s way out of this dilemma is a combined focus on industry-best economies of scale, industry leading process technology and optimized, application-oriented product solutions for both mobile and server applications.

HPCwire: How do you think NAND memory technology can best be applied in high performance computing systems?

So: Solid state drives are the next-generation storage devices that have overcome the shortcomings of rotating media in high performance computing systems. The SSD adoption rate in volume servers is supposed to grow dramatically. Its interface will slowly be changing from SATA to SAS or PCIe for easy migration.

The most important parts in this emerging product line are the NAND flash components as well as the controllers which manage the input and output of data. Other major components are DRAM, which help buffer during data input and output, and the firmware that drives an SSD.

Samsung is able to combine its extensive know-how, stemming from the design and the production of billions of NAND flash and DRAM components, with its long history of designing countless controllers and firmware, as a company not being “only” vertically integrated.

HPCwire: Are there other solid state memory technologies that you believe will prove their worth commercially? If so, how will they change the memory-storage hierarchy?

So: Many studies and researches on fast non-volatile memory have been conducted in the past years, such as PRAM and MRAM as potential future memory technologies. However, more time is needed to examine their commercial value, as currently no existing hardware can fully utilize the features of these NVM solutions in their different roles.

Based on the maturity of the chosen technology, the usage model might also affect the memory hierarchy. It seems quite obvious that DRAM speed like fast NVM can change the existing memory hierarchy. OS experts may have better answers to this question.

HPCwire: Will these newer technologies eventually displace NAND or even DRAM?

So: It will take more than just better technology to replace existing memories, as they possibly impact system architecture and the value chain. Hence we expect that these new technologies will slowly penetrate into different parts of systems and industries and start to gradually build a new ecosystem. Eventually though, a large portion of NAND and DRAM will be replaced.

Dr. So will be delivering a keynote on advanced memory technology at this year’s International Supercomputing Conference (ISC’12) in Hamburg Germany. His presentation will take place on Tuesday, June 19.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This