Commodity Memory for a High Performance World: The View from Samsung

By Nicole Hemsoth

February 21, 2012

As CPUs get ever more powerful, their hunger for data is outstripping the ability of memory systems to feed them. This is especially true in high performance computing, where memory capacity is often constrained by cost, and more recently, energy consumption. With larger supercomputers now incorporating upwards of hundreds of terabytes of main memory, and often with multiple terabytes of flash storage, this challenge will continue to grow.

As one of the world leaders in memory solutions, Samsung Semiconductor has been a key supplier of DRAM and NAND components that end up in high performance computing systems. Dr. Byungse So, who heads the Memory Product Planning & Application Engineering team at Samsung, shares his thoughts about the memory technologies needed by performance-minded users today and what might come next.

HPCwire: The memory wall is perhaps one of the biggest impediments in high performance computing today. What is the main reason that DRAM performance has failed to keep pace with processor performance?

Byungse So: In current system architectures, the CPU always needs high bandwidth and high density memory with low cost to keep feeding data to the computing engine. Therefore system memory has typically been a module-based commodity solution using multiple standard DRAM components. Due to its cost-driven design, system performance is compromised. It is time to shift gears by switching from cost-optimized to performance-optimized designs via application specific memory.

HPCwire: So what types of innovations will be needed? Are there DRAM technologies on the horizon that promise to do this?

So: Samsung has been exploring ways of narrowing the gap. Short term, Samsung will continue to provide the highest speed system and graphic memory. In the long run, Samsung will be investigating new interface technologies to meet high bandwidth requirements aimed at double-digit performance improvements over DDR3. To make this happen, close collaboration with CPU producers, platform builders as well as system users, is required.

HPCwire: Memory capacity can be an additional impediment to performance. Given the need for terabytes of memory for some HPC applications and the expense that entails, is there a way to build reasonably-priced systems that can support big memory applications?

So: Samsung has been leading the market with the highest capacity memory solutions and is already providing solutions which allow building terascale system memory for a single dual-processor system. Combined with the most advanced production process, Samsung will keep investigating how new stacking technologies including 3DS — 3D-Stacking –can allow adequate memory support of even most capacity-hungry systems.

HPCwire: The commodity DRAM business is well known for being rather unforgiving to suppliers, with some firms like OCZ exiting the market and others like Qimonda eventually going bankrupt. Why is the DRAM business so precarious and how has Samsung managed to maintain its viability in this segment?

So: DRAM as commodity memory has been under continuous pressure from its primary users, that is, the PC and notebook market, to continuously lower its cost. This enormous cost pressure has kept a number of suppliers in the red for a long time, ultimately pushing some suppliers out of the market, while also leading to designs compromising between cost and performance. Samsung’s way out of this dilemma is a combined focus on industry-best economies of scale, industry leading process technology and optimized, application-oriented product solutions for both mobile and server applications.

HPCwire: How do you think NAND memory technology can best be applied in high performance computing systems?

So: Solid state drives are the next-generation storage devices that have overcome the shortcomings of rotating media in high performance computing systems. The SSD adoption rate in volume servers is supposed to grow dramatically. Its interface will slowly be changing from SATA to SAS or PCIe for easy migration.

The most important parts in this emerging product line are the NAND flash components as well as the controllers which manage the input and output of data. Other major components are DRAM, which help buffer during data input and output, and the firmware that drives an SSD.

Samsung is able to combine its extensive know-how, stemming from the design and the production of billions of NAND flash and DRAM components, with its long history of designing countless controllers and firmware, as a company not being “only” vertically integrated.

HPCwire: Are there other solid state memory technologies that you believe will prove their worth commercially? If so, how will they change the memory-storage hierarchy?

So: Many studies and researches on fast non-volatile memory have been conducted in the past years, such as PRAM and MRAM as potential future memory technologies. However, more time is needed to examine their commercial value, as currently no existing hardware can fully utilize the features of these NVM solutions in their different roles.

Based on the maturity of the chosen technology, the usage model might also affect the memory hierarchy. It seems quite obvious that DRAM speed like fast NVM can change the existing memory hierarchy. OS experts may have better answers to this question.

HPCwire: Will these newer technologies eventually displace NAND or even DRAM?

So: It will take more than just better technology to replace existing memories, as they possibly impact system architecture and the value chain. Hence we expect that these new technologies will slowly penetrate into different parts of systems and industries and start to gradually build a new ecosystem. Eventually though, a large portion of NAND and DRAM will be replaced.

Dr. So will be delivering a keynote on advanced memory technology at this year’s International Supercomputing Conference (ISC’12) in Hamburg Germany. His presentation will take place on Tuesday, June 19.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger communities? That question is at the heart of a new study pub Read more…

By Tiffany Trader

Google Launches Site to Share its NYC-based Algorithm Research

August 22, 2017

Much of Google’s algorithm development occurs in groups scattered throughout New York City. Yesterday, Google launched a single website - NYC Algorithms and Optimization Team page - to provide a deeper view into all of Read more…

By John Russell

Dell Strikes Reseller Deal with Atos; Supplants SGI

August 22, 2017

Dell EMC and Atos announced a reseller deal today in which Dell will offer Atos’ high-end 8- and 16-socket Bullion servers. Some move from Dell had been expected following Hewlett Packard Enterprise’s purchase of SGI Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Glimpses of Today’s Total Solar Eclipse

August 21, 2017

Here are a few arresting images posted by NASA of today’s total solar eclipse. Such astronomical events have always captured our imagination and it’s not hard to understand why such occurrences were often greeted wit Read more…

By John Russell

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger c Read more…

By Tiffany Trader

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This