Commodity Memory for a High Performance World: The View from Samsung

By Nicole Hemsoth

February 21, 2012

As CPUs get ever more powerful, their hunger for data is outstripping the ability of memory systems to feed them. This is especially true in high performance computing, where memory capacity is often constrained by cost, and more recently, energy consumption. With larger supercomputers now incorporating upwards of hundreds of terabytes of main memory, and often with multiple terabytes of flash storage, this challenge will continue to grow.

As one of the world leaders in memory solutions, Samsung Semiconductor has been a key supplier of DRAM and NAND components that end up in high performance computing systems. Dr. Byungse So, who heads the Memory Product Planning & Application Engineering team at Samsung, shares his thoughts about the memory technologies needed by performance-minded users today and what might come next.

HPCwire: The memory wall is perhaps one of the biggest impediments in high performance computing today. What is the main reason that DRAM performance has failed to keep pace with processor performance?

Byungse So: In current system architectures, the CPU always needs high bandwidth and high density memory with low cost to keep feeding data to the computing engine. Therefore system memory has typically been a module-based commodity solution using multiple standard DRAM components. Due to its cost-driven design, system performance is compromised. It is time to shift gears by switching from cost-optimized to performance-optimized designs via application specific memory.

HPCwire: So what types of innovations will be needed? Are there DRAM technologies on the horizon that promise to do this?

So: Samsung has been exploring ways of narrowing the gap. Short term, Samsung will continue to provide the highest speed system and graphic memory. In the long run, Samsung will be investigating new interface technologies to meet high bandwidth requirements aimed at double-digit performance improvements over DDR3. To make this happen, close collaboration with CPU producers, platform builders as well as system users, is required.

HPCwire: Memory capacity can be an additional impediment to performance. Given the need for terabytes of memory for some HPC applications and the expense that entails, is there a way to build reasonably-priced systems that can support big memory applications?

So: Samsung has been leading the market with the highest capacity memory solutions and is already providing solutions which allow building terascale system memory for a single dual-processor system. Combined with the most advanced production process, Samsung will keep investigating how new stacking technologies including 3DS — 3D-Stacking –can allow adequate memory support of even most capacity-hungry systems.

HPCwire: The commodity DRAM business is well known for being rather unforgiving to suppliers, with some firms like OCZ exiting the market and others like Qimonda eventually going bankrupt. Why is the DRAM business so precarious and how has Samsung managed to maintain its viability in this segment?

So: DRAM as commodity memory has been under continuous pressure from its primary users, that is, the PC and notebook market, to continuously lower its cost. This enormous cost pressure has kept a number of suppliers in the red for a long time, ultimately pushing some suppliers out of the market, while also leading to designs compromising between cost and performance. Samsung’s way out of this dilemma is a combined focus on industry-best economies of scale, industry leading process technology and optimized, application-oriented product solutions for both mobile and server applications.

HPCwire: How do you think NAND memory technology can best be applied in high performance computing systems?

So: Solid state drives are the next-generation storage devices that have overcome the shortcomings of rotating media in high performance computing systems. The SSD adoption rate in volume servers is supposed to grow dramatically. Its interface will slowly be changing from SATA to SAS or PCIe for easy migration.

The most important parts in this emerging product line are the NAND flash components as well as the controllers which manage the input and output of data. Other major components are DRAM, which help buffer during data input and output, and the firmware that drives an SSD.

Samsung is able to combine its extensive know-how, stemming from the design and the production of billions of NAND flash and DRAM components, with its long history of designing countless controllers and firmware, as a company not being “only” vertically integrated.

HPCwire: Are there other solid state memory technologies that you believe will prove their worth commercially? If so, how will they change the memory-storage hierarchy?

So: Many studies and researches on fast non-volatile memory have been conducted in the past years, such as PRAM and MRAM as potential future memory technologies. However, more time is needed to examine their commercial value, as currently no existing hardware can fully utilize the features of these NVM solutions in their different roles.

Based on the maturity of the chosen technology, the usage model might also affect the memory hierarchy. It seems quite obvious that DRAM speed like fast NVM can change the existing memory hierarchy. OS experts may have better answers to this question.

HPCwire: Will these newer technologies eventually displace NAND or even DRAM?

So: It will take more than just better technology to replace existing memories, as they possibly impact system architecture and the value chain. Hence we expect that these new technologies will slowly penetrate into different parts of systems and industries and start to gradually build a new ecosystem. Eventually though, a large portion of NAND and DRAM will be replaced.

Dr. So will be delivering a keynote on advanced memory technology at this year’s International Supercomputing Conference (ISC’12) in Hamburg Germany. His presentation will take place on Tuesday, June 19.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break “Speed Limit”

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Intel Ships Drives Based on 3-D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3-D XPoint non-volatile memory technology as it targets data-driven workloads. Read more…

By George Leopold

Researchers Recreate ‘El Reno’ Tornado on Blue Waters Supercomputer

March 16, 2017

The United States experiences more tornadoes than any other country. About 1,200 tornadoes touch down each each year in the U.S. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

AMD Expands Exascale Vision at IEEE HPC Symposium

March 7, 2017

With the race towards exascale heating up – for example, the Exascale Computing Program PathForward awards are expected soon – AMD delivered more details of its exascale vision at last month’s 23rd IEEE Symposium on High Performance Computer Architecture. The chipmaker presented an “Exascale Node Architecture (ENA) as the primary building block for exascale machine” including descriptions of component, interconnect, and packaging strategy along with simulation benchmarks to bolster its case. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This