Retrofitting Programming Languages for a Parallel World

By James Reinders

February 23, 2012

The most widely used computer programming languages today were not designed as parallel programming languages. But retrofitting existing programming languages for parallel programming is underway. We can compare and contrast retrofits by looking at four key features, five key qualities, and the various implementation approaches.

In this article, I focus on the features and qualities, leaving the furious debates over best approaches (language vs. library vs. directives, and abstract and portable vs. low-level with lots of controls) for another day.

Four features we need

Features that any parallel programming solution, including retrofits, should include a defined memory model, synchronization, tasks, and data parallelism.

Memory model

Defining how changes in shared data are observable by different tasks had been an under-appreciated problem. Hans-J. Boehm wrote a report in 2004, titled Threads Cannot Be Implemented As a Library, which explains these issues. Having a well-defined ordering among accesses to distinct variables, and enabling the independence of updates to distinct variables, is so important that they have been addressed in Java, C11 and C++11. Without these retrofits, every parallel program sits on a crumbling foundation.

Synchronization

The need for portable and efficient synchronization is substantial. Boost libraries, Intel’s Threading Building Blocks (TBB) and OpenMP offer solutions that are widely utilized. C++11 and C11 now offer support. Beyond these, the concept of transactions is a topic worth exploring in a future article. Synchronization retrofitting is helping portability. Substantial opportunities remain for helping efficiency.

Tasks, not threads

Programming should be an exercise in writing tasks that can run concurrently, without the programmer specifying the precise mapping of tasks onto hardware threads. An introduction to this challenge is The Problem with Threads by Edward A. Lee.

Mapping should be the job of tools, including run-time schedulers, not explicit programming. This philosophy is being well supported by retrofits like OpenMP, TBB, Cilk Plus, Microsoft’s Parallel Patterns Library (PPL) and Apple’s Grand Central Dispatch (GCD). The need to assert some control over task to thread mapping to maximize performance is still present when using such systems today, but not always supported.

Nevertheless, programming directly to native threads (e.g., pthreads) in applications is something that should be completely avoided. Retrofits are sufficient today to make tasks the method of choice.

Data parallel support

It should be reasonably straightforward to write a portable program that takes advantage of data parallel hardware. Ideally, data parallel support should be able to utilize vector and task parallel capabilities without a programmer having to explicitly code the division between the two.

Unfortunately, no such solution is in wide spread use today even for vectorization alone. Effective auto-parallelization is very dependent on highly optimizing compilers. Compiler intrinsics lock code into a particular vector width (MMX=64, SSE=128, AVX=256, etc.). Elemental functions in CUDA, OpenCL, and Cilk Plus offer a glimpse into possible retrofits. Intel proposes we adopt the vectorization benefits of Fortran 90 array notations into C and C++ as part of the Cilk Plus project.

Vector hardware is increasingly important in processors, GPUs and co-processors. OpenCL and OpenMP wrestle today with how to embrace data parallel hardware and how tightly tied programming will be to it. Microsoft C++ AMP has similar challenges when it comes to market with the next Microsoft Visual Studio. Standard, abstract, portable and effective solutions wanted!

Five qualities we should desire

Five key qualities that are desirable, for parallel programming, include composability, sequential reasoning, communication minimization, performance portability and safety.

All of these qualities are unobtainable, in an absolute sense, whether as retrofits in an old language or with a clean slate and a new language. That is why we cannot call them features. The more of these qualities we obtain the better off we are. That makes them very important to keep in mind.

Composability

Composability is a well-known concept in programming, offering rules for combining different things together (functions, objects, modules, etc.) so that it is easy to compose (think: combine in unanticipated ways). It is important to think of composability in terms of both correctness and performance.

OpenCL, largely because it is less abstract, has low composability on both accounts. OpenMP and OpenCL have very serious performance composability unless they are used very carefully. New and abstract retrofits (TBB, Cilk, PPL, GCD) are much more tolerant and able to deliver high composability.

Self-composability is an essential first step, but the ability to compose multiple retrofits together is essential in the long run as well. A welcome solution for tool vendors, Microsoft’s Concurrency Runtime has allowed retrofits from multiple vendors to coexist with increased composability. Parallel programming without the ability to mix and match freely, is undesirable and counterproductive.

Composability deserves more attention than it gets.

Sequential reasoning

Sequential reasoning, the norm for reading a serial implementation, can apply with an appropriately expressed parallel program. OpenMP uses hints to create the use of parallelism instead of code changes. This allows the intent of a program to remain evident in the code. TBB and PPL emphasize relaxed sequential semantics to provide parallelism as an accelerator without making it mandatory for correctness. Writing a program in a sequentially consistent fashion is permitted and encouraged.

An explicit goal of Cilk Plus is to offer sequential semantics to set it apart from other retrofits. The serial elision (or C elision) of a Cilk program is touted in papers from MIT. Programming that preserves sequential semantics has received praise as easier to learn and use. The elemental functions in OpenCL, CUDA and Cilk Plus have similar objectives.

It is fair to say that programming in a manner that requires understanding parallel semantics, in order to understand intent, is both unpopular and out of vogue today. Such mandatory parallelism is harder to understand and to debug.

Sequential reasoning can be extended to debuggers too. A hot area to watch here is debuggers working to present a debugging experience more akin to sequential experiences, with features like Rogue Wave’s replay capabilities in the Totalview debugger.

Instead of sequential reasoning being a retrofit, it is more accurate to think of sequential reasoning as often being purposefully sought and preserved in a parallel world.

Communication minimization

Performance tuning on parallel systems often focuses on ensuring data is local when you use it and minimizing the need to move it around. Data motion means communication of some sort, and communication is generally expensive. Decisions in the design and implementation of retrofits, as well as the application programming itself, often impact performance dramatically. The task stealing algorithms of TBB, Cilk, PPL and GCD all have cache reuse strongly in mind in their designs. Retrofits to help, with communication minimization, are a tricky business and could use more attention.

Performance portability

The goal here is that a tuned program on one piece of hardware performs reasonably well on another piece of hardware. It is desirable to be able to describe data and tasks in such a way that performance scales as parallelism increases (number of cores, or size of vectors, or cache size, etc.). Nothing is ever fully performance portable, but more abstract retrofits tend to hold up better.

Unfortunately, implementations of abstractions can struggle to offer peak performance. It took years for compilers to offer performance for MMX or SSE that was competitive with assembly language programming. Use of cache-agnostic algorithms generally increase performance portability. Today, competing on performance with carefully-crafted CUDA and OpenCL code can be challenging because the coding is low level enough to encourage, or even require, the program structure to match the hardware. The lack of performance portability of such code is frequently shown, but effective alternatives remain works-in-progress. Language design, algorithm choices and programming style can affect performance portability a great deal.

Safety

The freedom from deadlocks and race conditions, may be the most difficult to provide via a retrofit. No method to add complete safety to C or C++ has gained wide popularity. Safety has not been incorporated into non-managed languages easily, despite some valiant efforts to do so.

To make a language safe, pointers have to be removed or severely restricted. Meanwhile, tools are maturing to help us cope with safety despite lack of direct language support, and safer coding style and safer retrofits appear to help as well. Perhaps safety comes via a combination of “good enough” and “we can cope using tools.”

A journey ahead, together

There are at least four key programming problems that any parallel programming solution should address, and five key qualities that can make a programming model, retrofit or otherwise, more desirable. Evolution in hardware will help as well.

—–

About the author

James Reinders has helped develop supercomputers, microprocessors and software tools for 25 years. He is a senior engineer for Intel in Hillsboro Oregon.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This