Retrofitting Programming Languages for a Parallel World

By James Reinders

February 23, 2012

The most widely used computer programming languages today were not designed as parallel programming languages. But retrofitting existing programming languages for parallel programming is underway. We can compare and contrast retrofits by looking at four key features, five key qualities, and the various implementation approaches.

In this article, I focus on the features and qualities, leaving the furious debates over best approaches (language vs. library vs. directives, and abstract and portable vs. low-level with lots of controls) for another day.

Four features we need

Features that any parallel programming solution, including retrofits, should include a defined memory model, synchronization, tasks, and data parallelism.

Memory model

Defining how changes in shared data are observable by different tasks had been an under-appreciated problem. Hans-J. Boehm wrote a report in 2004, titled Threads Cannot Be Implemented As a Library, which explains these issues. Having a well-defined ordering among accesses to distinct variables, and enabling the independence of updates to distinct variables, is so important that they have been addressed in Java, C11 and C++11. Without these retrofits, every parallel program sits on a crumbling foundation.

Synchronization

The need for portable and efficient synchronization is substantial. Boost libraries, Intel’s Threading Building Blocks (TBB) and OpenMP offer solutions that are widely utilized. C++11 and C11 now offer support. Beyond these, the concept of transactions is a topic worth exploring in a future article. Synchronization retrofitting is helping portability. Substantial opportunities remain for helping efficiency.

Tasks, not threads

Programming should be an exercise in writing tasks that can run concurrently, without the programmer specifying the precise mapping of tasks onto hardware threads. An introduction to this challenge is The Problem with Threads by Edward A. Lee.

Mapping should be the job of tools, including run-time schedulers, not explicit programming. This philosophy is being well supported by retrofits like OpenMP, TBB, Cilk Plus, Microsoft’s Parallel Patterns Library (PPL) and Apple’s Grand Central Dispatch (GCD). The need to assert some control over task to thread mapping to maximize performance is still present when using such systems today, but not always supported.

Nevertheless, programming directly to native threads (e.g., pthreads) in applications is something that should be completely avoided. Retrofits are sufficient today to make tasks the method of choice.

Data parallel support

It should be reasonably straightforward to write a portable program that takes advantage of data parallel hardware. Ideally, data parallel support should be able to utilize vector and task parallel capabilities without a programmer having to explicitly code the division between the two.

Unfortunately, no such solution is in wide spread use today even for vectorization alone. Effective auto-parallelization is very dependent on highly optimizing compilers. Compiler intrinsics lock code into a particular vector width (MMX=64, SSE=128, AVX=256, etc.). Elemental functions in CUDA, OpenCL, and Cilk Plus offer a glimpse into possible retrofits. Intel proposes we adopt the vectorization benefits of Fortran 90 array notations into C and C++ as part of the Cilk Plus project.

Vector hardware is increasingly important in processors, GPUs and co-processors. OpenCL and OpenMP wrestle today with how to embrace data parallel hardware and how tightly tied programming will be to it. Microsoft C++ AMP has similar challenges when it comes to market with the next Microsoft Visual Studio. Standard, abstract, portable and effective solutions wanted!

Five qualities we should desire

Five key qualities that are desirable, for parallel programming, include composability, sequential reasoning, communication minimization, performance portability and safety.

All of these qualities are unobtainable, in an absolute sense, whether as retrofits in an old language or with a clean slate and a new language. That is why we cannot call them features. The more of these qualities we obtain the better off we are. That makes them very important to keep in mind.

Composability

Composability is a well-known concept in programming, offering rules for combining different things together (functions, objects, modules, etc.) so that it is easy to compose (think: combine in unanticipated ways). It is important to think of composability in terms of both correctness and performance.

OpenCL, largely because it is less abstract, has low composability on both accounts. OpenMP and OpenCL have very serious performance composability unless they are used very carefully. New and abstract retrofits (TBB, Cilk, PPL, GCD) are much more tolerant and able to deliver high composability.

Self-composability is an essential first step, but the ability to compose multiple retrofits together is essential in the long run as well. A welcome solution for tool vendors, Microsoft’s Concurrency Runtime has allowed retrofits from multiple vendors to coexist with increased composability. Parallel programming without the ability to mix and match freely, is undesirable and counterproductive.

Composability deserves more attention than it gets.

Sequential reasoning

Sequential reasoning, the norm for reading a serial implementation, can apply with an appropriately expressed parallel program. OpenMP uses hints to create the use of parallelism instead of code changes. This allows the intent of a program to remain evident in the code. TBB and PPL emphasize relaxed sequential semantics to provide parallelism as an accelerator without making it mandatory for correctness. Writing a program in a sequentially consistent fashion is permitted and encouraged.

An explicit goal of Cilk Plus is to offer sequential semantics to set it apart from other retrofits. The serial elision (or C elision) of a Cilk program is touted in papers from MIT. Programming that preserves sequential semantics has received praise as easier to learn and use. The elemental functions in OpenCL, CUDA and Cilk Plus have similar objectives.

It is fair to say that programming in a manner that requires understanding parallel semantics, in order to understand intent, is both unpopular and out of vogue today. Such mandatory parallelism is harder to understand and to debug.

Sequential reasoning can be extended to debuggers too. A hot area to watch here is debuggers working to present a debugging experience more akin to sequential experiences, with features like Rogue Wave’s replay capabilities in the Totalview debugger.

Instead of sequential reasoning being a retrofit, it is more accurate to think of sequential reasoning as often being purposefully sought and preserved in a parallel world.

Communication minimization

Performance tuning on parallel systems often focuses on ensuring data is local when you use it and minimizing the need to move it around. Data motion means communication of some sort, and communication is generally expensive. Decisions in the design and implementation of retrofits, as well as the application programming itself, often impact performance dramatically. The task stealing algorithms of TBB, Cilk, PPL and GCD all have cache reuse strongly in mind in their designs. Retrofits to help, with communication minimization, are a tricky business and could use more attention.

Performance portability

The goal here is that a tuned program on one piece of hardware performs reasonably well on another piece of hardware. It is desirable to be able to describe data and tasks in such a way that performance scales as parallelism increases (number of cores, or size of vectors, or cache size, etc.). Nothing is ever fully performance portable, but more abstract retrofits tend to hold up better.

Unfortunately, implementations of abstractions can struggle to offer peak performance. It took years for compilers to offer performance for MMX or SSE that was competitive with assembly language programming. Use of cache-agnostic algorithms generally increase performance portability. Today, competing on performance with carefully-crafted CUDA and OpenCL code can be challenging because the coding is low level enough to encourage, or even require, the program structure to match the hardware. The lack of performance portability of such code is frequently shown, but effective alternatives remain works-in-progress. Language design, algorithm choices and programming style can affect performance portability a great deal.

Safety

The freedom from deadlocks and race conditions, may be the most difficult to provide via a retrofit. No method to add complete safety to C or C++ has gained wide popularity. Safety has not been incorporated into non-managed languages easily, despite some valiant efforts to do so.

To make a language safe, pointers have to be removed or severely restricted. Meanwhile, tools are maturing to help us cope with safety despite lack of direct language support, and safer coding style and safer retrofits appear to help as well. Perhaps safety comes via a combination of “good enough” and “we can cope using tools.”

A journey ahead, together

There are at least four key programming problems that any parallel programming solution should address, and five key qualities that can make a programming model, retrofit or otherwise, more desirable. Evolution in hardware will help as well.

—–

About the author

James Reinders has helped develop supercomputers, microprocessors and software tools for 25 years. He is a senior engineer for Intel in Hillsboro Oregon.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combined peak computing capacity, the new systems will extend the a Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

ASC18: Tough Applications & Tough Luck

May 17, 2018

The applications at the ASC18 Student Cluster Competition were tough. Tougher than the $3.99 steak special at your local greasy spoon restaurant. The apps are so tough that even Chuck Norris backs away from them slowly. Read more…

By Dan Olds

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and the technology challenges ahead. These discussions happened in Read more…

By Alex R. Larzelere

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

Emerging Advanced Scale Tech Trends Focus of Annual Tabor Conference

May 9, 2018

At Tabor Communications' annual Advanced Scale Forum (ASF) held this week in Austin, the focus was on enterprise adoption of HPC-class technologies and high performance data analytics (HPDA). It’s a confab that brings together end users (CIOs, IT planners, department heads) and vendors and encourages... Read more…

By the Editorial Team

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This