Retrofitting Programming Languages for a Parallel World

By James Reinders

February 23, 2012

The most widely used computer programming languages today were not designed as parallel programming languages. But retrofitting existing programming languages for parallel programming is underway. We can compare and contrast retrofits by looking at four key features, five key qualities, and the various implementation approaches.

In this article, I focus on the features and qualities, leaving the furious debates over best approaches (language vs. library vs. directives, and abstract and portable vs. low-level with lots of controls) for another day.

Four features we need

Features that any parallel programming solution, including retrofits, should include a defined memory model, synchronization, tasks, and data parallelism.

Memory model

Defining how changes in shared data are observable by different tasks had been an under-appreciated problem. Hans-J. Boehm wrote a report in 2004, titled Threads Cannot Be Implemented As a Library, which explains these issues. Having a well-defined ordering among accesses to distinct variables, and enabling the independence of updates to distinct variables, is so important that they have been addressed in Java, C11 and C++11. Without these retrofits, every parallel program sits on a crumbling foundation.

Synchronization

The need for portable and efficient synchronization is substantial. Boost libraries, Intel’s Threading Building Blocks (TBB) and OpenMP offer solutions that are widely utilized. C++11 and C11 now offer support. Beyond these, the concept of transactions is a topic worth exploring in a future article. Synchronization retrofitting is helping portability. Substantial opportunities remain for helping efficiency.

Tasks, not threads

Programming should be an exercise in writing tasks that can run concurrently, without the programmer specifying the precise mapping of tasks onto hardware threads. An introduction to this challenge is The Problem with Threads by Edward A. Lee.

Mapping should be the job of tools, including run-time schedulers, not explicit programming. This philosophy is being well supported by retrofits like OpenMP, TBB, Cilk Plus, Microsoft’s Parallel Patterns Library (PPL) and Apple’s Grand Central Dispatch (GCD). The need to assert some control over task to thread mapping to maximize performance is still present when using such systems today, but not always supported.

Nevertheless, programming directly to native threads (e.g., pthreads) in applications is something that should be completely avoided. Retrofits are sufficient today to make tasks the method of choice.

Data parallel support

It should be reasonably straightforward to write a portable program that takes advantage of data parallel hardware. Ideally, data parallel support should be able to utilize vector and task parallel capabilities without a programmer having to explicitly code the division between the two.

Unfortunately, no such solution is in wide spread use today even for vectorization alone. Effective auto-parallelization is very dependent on highly optimizing compilers. Compiler intrinsics lock code into a particular vector width (MMX=64, SSE=128, AVX=256, etc.). Elemental functions in CUDA, OpenCL, and Cilk Plus offer a glimpse into possible retrofits. Intel proposes we adopt the vectorization benefits of Fortran 90 array notations into C and C++ as part of the Cilk Plus project.

Vector hardware is increasingly important in processors, GPUs and co-processors. OpenCL and OpenMP wrestle today with how to embrace data parallel hardware and how tightly tied programming will be to it. Microsoft C++ AMP has similar challenges when it comes to market with the next Microsoft Visual Studio. Standard, abstract, portable and effective solutions wanted!

Five qualities we should desire

Five key qualities that are desirable, for parallel programming, include composability, sequential reasoning, communication minimization, performance portability and safety.

All of these qualities are unobtainable, in an absolute sense, whether as retrofits in an old language or with a clean slate and a new language. That is why we cannot call them features. The more of these qualities we obtain the better off we are. That makes them very important to keep in mind.

Composability

Composability is a well-known concept in programming, offering rules for combining different things together (functions, objects, modules, etc.) so that it is easy to compose (think: combine in unanticipated ways). It is important to think of composability in terms of both correctness and performance.

OpenCL, largely because it is less abstract, has low composability on both accounts. OpenMP and OpenCL have very serious performance composability unless they are used very carefully. New and abstract retrofits (TBB, Cilk, PPL, GCD) are much more tolerant and able to deliver high composability.

Self-composability is an essential first step, but the ability to compose multiple retrofits together is essential in the long run as well. A welcome solution for tool vendors, Microsoft’s Concurrency Runtime has allowed retrofits from multiple vendors to coexist with increased composability. Parallel programming without the ability to mix and match freely, is undesirable and counterproductive.

Composability deserves more attention than it gets.

Sequential reasoning

Sequential reasoning, the norm for reading a serial implementation, can apply with an appropriately expressed parallel program. OpenMP uses hints to create the use of parallelism instead of code changes. This allows the intent of a program to remain evident in the code. TBB and PPL emphasize relaxed sequential semantics to provide parallelism as an accelerator without making it mandatory for correctness. Writing a program in a sequentially consistent fashion is permitted and encouraged.

An explicit goal of Cilk Plus is to offer sequential semantics to set it apart from other retrofits. The serial elision (or C elision) of a Cilk program is touted in papers from MIT. Programming that preserves sequential semantics has received praise as easier to learn and use. The elemental functions in OpenCL, CUDA and Cilk Plus have similar objectives.

It is fair to say that programming in a manner that requires understanding parallel semantics, in order to understand intent, is both unpopular and out of vogue today. Such mandatory parallelism is harder to understand and to debug.

Sequential reasoning can be extended to debuggers too. A hot area to watch here is debuggers working to present a debugging experience more akin to sequential experiences, with features like Rogue Wave’s replay capabilities in the Totalview debugger.

Instead of sequential reasoning being a retrofit, it is more accurate to think of sequential reasoning as often being purposefully sought and preserved in a parallel world.

Communication minimization

Performance tuning on parallel systems often focuses on ensuring data is local when you use it and minimizing the need to move it around. Data motion means communication of some sort, and communication is generally expensive. Decisions in the design and implementation of retrofits, as well as the application programming itself, often impact performance dramatically. The task stealing algorithms of TBB, Cilk, PPL and GCD all have cache reuse strongly in mind in their designs. Retrofits to help, with communication minimization, are a tricky business and could use more attention.

Performance portability

The goal here is that a tuned program on one piece of hardware performs reasonably well on another piece of hardware. It is desirable to be able to describe data and tasks in such a way that performance scales as parallelism increases (number of cores, or size of vectors, or cache size, etc.). Nothing is ever fully performance portable, but more abstract retrofits tend to hold up better.

Unfortunately, implementations of abstractions can struggle to offer peak performance. It took years for compilers to offer performance for MMX or SSE that was competitive with assembly language programming. Use of cache-agnostic algorithms generally increase performance portability. Today, competing on performance with carefully-crafted CUDA and OpenCL code can be challenging because the coding is low level enough to encourage, or even require, the program structure to match the hardware. The lack of performance portability of such code is frequently shown, but effective alternatives remain works-in-progress. Language design, algorithm choices and programming style can affect performance portability a great deal.

Safety

The freedom from deadlocks and race conditions, may be the most difficult to provide via a retrofit. No method to add complete safety to C or C++ has gained wide popularity. Safety has not been incorporated into non-managed languages easily, despite some valiant efforts to do so.

To make a language safe, pointers have to be removed or severely restricted. Meanwhile, tools are maturing to help us cope with safety despite lack of direct language support, and safer coding style and safer retrofits appear to help as well. Perhaps safety comes via a combination of “good enough” and “we can cope using tools.”

A journey ahead, together

There are at least four key programming problems that any parallel programming solution should address, and five key qualities that can make a programming model, retrofit or otherwise, more desirable. Evolution in hardware will help as well.

—–

About the author

James Reinders has helped develop supercomputers, microprocessors and software tools for 25 years. He is a senior engineer for Intel in Hillsboro Oregon.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

China’s Expanding Effort to Win in Microchips

July 27, 2017

The global battle for preeminence, or at least national independence, in semiconductor technology and manufacturing continues to heat up with Europe, China, Japan, and the U.S. all vying for sway. A fascinating article ( Read more…

By John Russell

Hyperion: Storage to Lead HPC Growth in 2016-2021

July 27, 2017

Global HPC external storage revenues will grow 7.8% over the 2016-2021 timeframe according to an updated forecast released by Hyperion Research this week. HPC server sales, by comparison, will grow a modest 5.8% to $14.8 Read more…

By John Russell

Exascale FY18 Budget – The Senate Provides Their Input

July 27, 2017

In the federal budgeting world, “regular order” is a meaningful term that is fondly remembered by members of both the Congress and the Executive Branch. Regular order is the established process whereby an Administrat Read more…

By Alex R. Larzelere

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

India Plots Three-Phase Indigenous Supercomputing Strategy

July 26, 2017

Additional details on India's plans to stand up an indigenous supercomputer came to light earlier this week. As reported in the Indian press, the Rs 4,500-crore (~$675 million) supercomputing project, approved by the Ind Read more…

By Tiffany Trader

Exascale FY18 Budget – The Senate Provides Their Input

July 27, 2017

In the federal budgeting world, “regular order” is a meaningful term that is fondly remembered by members of both the Congress and the Executive Branch. Reg Read more…

By Alex R. Larzelere

India Plots Three-Phase Indigenous Supercomputing Strategy

July 26, 2017

Additional details on India's plans to stand up an indigenous supercomputer came to light earlier this week. As reported in the Indian press, the Rs 4,500-crore Read more…

By Tiffany Trader

Tuning InfiniBand Interconnects Using Congestion Control

July 26, 2017

InfiniBand is among the most common and well-known cluster interconnect technologies. However, the complexities of an InfiniBand (IB) network can frustrate the Read more…

By Adam Dorsey

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a comm Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This