OpenCL Gains Ground On CUDA

By Michael Feldman

February 28, 2012

As the two major programming frameworks for GPU computing, OpenCL and CUDA have been competing for mindshare in the developer community for the past few years. Until recently, CUDA has attracted most of the attention from developers, especially in the high performance computing realm. But OpenCL software has now matured to the point where HPC practitioners are taking a second look.

Both OpenCL and CUDA provide a general-purpose model for data parallelism as well as low-level access to hardware, but only OpenCL provides an open, industry-standard framework. As such, it has garnered support from nearly all processor manufacturers including AMD, Intel, and NVIDIA, as well as others that serve the mobile and embedded computing markets. As a result, applications developed in OpenCL are now portable across a variety of GPUs and CPUs.

Although OpenCL 1.0 was introduced in December 2008, just a year and a half after the NVIDIA launched its first version of CUDA, OpenCL still trails CUDA in popularity by a wide margin, especially with regard to HPC. That is mostly due to a concerted effort by NVIDIA to establish CUDA as the dominant programming framework for GPU application development in this realm..

AMD has been the most vocal booster of OpenCL technology for technical computing, but it’s lack of a competitive product set for high-end GPU computing has muted that message. Thus far, OpenCL usage has been mostly relegated to client-side computing, especially for mobile platforms, which have increasingly incorporated GPU silicon into their designs. Apple, who initially developed OpenCL before handing it off to the open-standard Khronos Group, was instrumental in getting the technology off the ground.

The knock on OpenCL for HPC users has been lack of maturity, which has resulted in low performance, compared to CUDA. There is also the perception that support from the principle HPC chipmakers (Intel, AMD and NVIDIA) would be less than enthusiastic, at least for their high-end processors. In many ways, that’s still true, given that NVIDIA is devoting most of its attention to its home-grown CUDA software, while Intel seems to have settled on its own parallel programming frameworks, mainly Cilk Plus and Threading Building Blocks.

AMD though, continues to champion OpenCL, and some of their more recent compiler and library releases have improved performance considerably. In fact, Kyle Spafford, from the Future Technology Group at Oak Ridge National Lab (ORNL), has been benchmarking the two technologies for some time and is now convinced that OpenCL performance is now on par with that of CUDA. He recently presented his findings at Georgia Tech’s Keeneland Workshop.

Spafford’s ran ORNL’s Scalable Heterogeneous Computing Benchmark Suite (SHOC) that has been optimized for both CUDA and OpenCL, and found that OpenCL can match CUDA performance on most of the basic math kernels. He also found that OpenCL’s performance on some kernels, like SGEMM, has increased 10-fold since 2009. The one code that CUDA still has a significant performance advantage is that of the Fast Fourier Transform (FFT). Spafford attributes CUDA’s better FFT performance on its use of a fast intrinsic, with OpenCL implementation (NVIDIA’s in this case*) employing a slower, more accurate version. If the implementations are matched, the performance difference goes away, says Spafford.

Others have found similar behavior on stand-alone science applications. A research group at Dartmouth running a numerical model of gravitation waves with OpenCL and CUDA found similar performance between OpenCL and CUDA, in this case on Tesla GPUs and IBM’s Cell BE processors. In the resulting paper, the researchers conclude that “an OpenCL-based implementation delivers comparable performance to that based on a native SDK on both types of accelerator hardware.”

GPU software maker AccelerEyes has seen CUDA and OpenCL performance equalize. The company, which recently released OpenCL-powered beta versions of their two flagship software products, ArrayFire and Jacket, has found that for most kernel codes, the two technologies now exhibit similar performance. Like ORNL, they found FFT speed is still better on CUDA due to NVIDIA’s faster implementation, but AMD’s OpenCL compiler and libraries have improved considerably, both in scope and performance.

According to AccelerEyes CEO John Melonakos, over half of their customers develop their GPU-accelerated code on their PCs before deploying to a workstation or cluster, so the ability to support non-NVIDIA hardware can be quite useful. For example, customers using MacBooks as development platforms couldn’t run CUDA there because Apple has no NVIDIA GPU option on its latest laptops. And since the AMD OpenCL libraries that AccelerEyes used in their beta offerings work just fine on Intel CPUs, AMD CPUs, and NVIDIA GPUs, there are no hardware incompatibility issues.

Then there are users who are just unwilling to adopt vendor-specific software stacks such as CUDA. “There are a class of people who absolutely want to do GPU computing but are resistant to anything that is vendor-locked,” Melonakos told HPCwire. He says this is group that has jumped onto their OpenCL-based offerings first.

To counter that kind of perception, NVIDIA has recently opened up the CUDA compiler source code for third-party developers. Significantly though, NVIDIA is not putting its all-important CUDA math libraries, like CUBLAS and CUFFT, into the open source pot. According to Melonakos, the large and mature library set is CUDA’s real strength in the technical computing arena. Open source or not, NVIDIA still retains control of the CUDA software technology, which is why it is still perceived as a vendor-specific solution.

Even NVIDIA and Intel are hedging their bets with OpenCL though, with both vendors offering software hooks for their respective hardware. At this point, these companies are providing this support as a nod to their mobile computing developers (although Intel is reportedly working on a MIC processor port too). But since there is an increasing amount of cross-pollination between mobile and HPC these days, it’s not clear how developers will end up using these technologies.

In fact, if the mobile space latches onto OpenCL in a big way and it becomes the standard low-level solution for heterogenous computing, that could help speed its adoption at the high-end. Once OpenCL reaches a critical mass of acceptance in a volume market such as that, there will be a rapid increase in demand for robust compilers and libraries. As Melonakos put it: “I dont think OpenCL is going away.”

[Editor’s note: The original article erroneously stated that the SHOC benchmark work used AMD’s implementation of OpenCL, rather than NVIDIA’s. We regret the error.]

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This