OpenCL Gains Ground On CUDA

By Michael Feldman

February 28, 2012

As the two major programming frameworks for GPU computing, OpenCL and CUDA have been competing for mindshare in the developer community for the past few years. Until recently, CUDA has attracted most of the attention from developers, especially in the high performance computing realm. But OpenCL software has now matured to the point where HPC practitioners are taking a second look.

Both OpenCL and CUDA provide a general-purpose model for data parallelism as well as low-level access to hardware, but only OpenCL provides an open, industry-standard framework. As such, it has garnered support from nearly all processor manufacturers including AMD, Intel, and NVIDIA, as well as others that serve the mobile and embedded computing markets. As a result, applications developed in OpenCL are now portable across a variety of GPUs and CPUs.

Although OpenCL 1.0 was introduced in December 2008, just a year and a half after the NVIDIA launched its first version of CUDA, OpenCL still trails CUDA in popularity by a wide margin, especially with regard to HPC. That is mostly due to a concerted effort by NVIDIA to establish CUDA as the dominant programming framework for GPU application development in this realm..

AMD has been the most vocal booster of OpenCL technology for technical computing, but it’s lack of a competitive product set for high-end GPU computing has muted that message. Thus far, OpenCL usage has been mostly relegated to client-side computing, especially for mobile platforms, which have increasingly incorporated GPU silicon into their designs. Apple, who initially developed OpenCL before handing it off to the open-standard Khronos Group, was instrumental in getting the technology off the ground.

The knock on OpenCL for HPC users has been lack of maturity, which has resulted in low performance, compared to CUDA. There is also the perception that support from the principle HPC chipmakers (Intel, AMD and NVIDIA) would be less than enthusiastic, at least for their high-end processors. In many ways, that’s still true, given that NVIDIA is devoting most of its attention to its home-grown CUDA software, while Intel seems to have settled on its own parallel programming frameworks, mainly Cilk Plus and Threading Building Blocks.

AMD though, continues to champion OpenCL, and some of their more recent compiler and library releases have improved performance considerably. In fact, Kyle Spafford, from the Future Technology Group at Oak Ridge National Lab (ORNL), has been benchmarking the two technologies for some time and is now convinced that OpenCL performance is now on par with that of CUDA. He recently presented his findings at Georgia Tech’s Keeneland Workshop.

Spafford’s ran ORNL’s Scalable Heterogeneous Computing Benchmark Suite (SHOC) that has been optimized for both CUDA and OpenCL, and found that OpenCL can match CUDA performance on most of the basic math kernels. He also found that OpenCL’s performance on some kernels, like SGEMM, has increased 10-fold since 2009. The one code that CUDA still has a significant performance advantage is that of the Fast Fourier Transform (FFT). Spafford attributes CUDA’s better FFT performance on its use of a fast intrinsic, with OpenCL implementation (NVIDIA’s in this case*) employing a slower, more accurate version. If the implementations are matched, the performance difference goes away, says Spafford.

Others have found similar behavior on stand-alone science applications. A research group at Dartmouth running a numerical model of gravitation waves with OpenCL and CUDA found similar performance between OpenCL and CUDA, in this case on Tesla GPUs and IBM’s Cell BE processors. In the resulting paper, the researchers conclude that “an OpenCL-based implementation delivers comparable performance to that based on a native SDK on both types of accelerator hardware.”

GPU software maker AccelerEyes has seen CUDA and OpenCL performance equalize. The company, which recently released OpenCL-powered beta versions of their two flagship software products, ArrayFire and Jacket, has found that for most kernel codes, the two technologies now exhibit similar performance. Like ORNL, they found FFT speed is still better on CUDA due to NVIDIA’s faster implementation, but AMD’s OpenCL compiler and libraries have improved considerably, both in scope and performance.

According to AccelerEyes CEO John Melonakos, over half of their customers develop their GPU-accelerated code on their PCs before deploying to a workstation or cluster, so the ability to support non-NVIDIA hardware can be quite useful. For example, customers using MacBooks as development platforms couldn’t run CUDA there because Apple has no NVIDIA GPU option on its latest laptops. And since the AMD OpenCL libraries that AccelerEyes used in their beta offerings work just fine on Intel CPUs, AMD CPUs, and NVIDIA GPUs, there are no hardware incompatibility issues.

Then there are users who are just unwilling to adopt vendor-specific software stacks such as CUDA. “There are a class of people who absolutely want to do GPU computing but are resistant to anything that is vendor-locked,” Melonakos told HPCwire. He says this is group that has jumped onto their OpenCL-based offerings first.

To counter that kind of perception, NVIDIA has recently opened up the CUDA compiler source code for third-party developers. Significantly though, NVIDIA is not putting its all-important CUDA math libraries, like CUBLAS and CUFFT, into the open source pot. According to Melonakos, the large and mature library set is CUDA’s real strength in the technical computing arena. Open source or not, NVIDIA still retains control of the CUDA software technology, which is why it is still perceived as a vendor-specific solution.

Even NVIDIA and Intel are hedging their bets with OpenCL though, with both vendors offering software hooks for their respective hardware. At this point, these companies are providing this support as a nod to their mobile computing developers (although Intel is reportedly working on a MIC processor port too). But since there is an increasing amount of cross-pollination between mobile and HPC these days, it’s not clear how developers will end up using these technologies.

In fact, if the mobile space latches onto OpenCL in a big way and it becomes the standard low-level solution for heterogenous computing, that could help speed its adoption at the high-end. Once OpenCL reaches a critical mass of acceptance in a volume market such as that, there will be a rapid increase in demand for robust compilers and libraries. As Melonakos put it: “I dont think OpenCL is going away.”

[Editor’s note: The original article erroneously stated that the SHOC benchmark work used AMD’s implementation of OpenCL, rather than NVIDIA’s. We regret the error.]

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This