OpenCL Gains Ground On CUDA

By Michael Feldman

February 28, 2012

As the two major programming frameworks for GPU computing, OpenCL and CUDA have been competing for mindshare in the developer community for the past few years. Until recently, CUDA has attracted most of the attention from developers, especially in the high performance computing realm. But OpenCL software has now matured to the point where HPC practitioners are taking a second look.

Both OpenCL and CUDA provide a general-purpose model for data parallelism as well as low-level access to hardware, but only OpenCL provides an open, industry-standard framework. As such, it has garnered support from nearly all processor manufacturers including AMD, Intel, and NVIDIA, as well as others that serve the mobile and embedded computing markets. As a result, applications developed in OpenCL are now portable across a variety of GPUs and CPUs.

Although OpenCL 1.0 was introduced in December 2008, just a year and a half after the NVIDIA launched its first version of CUDA, OpenCL still trails CUDA in popularity by a wide margin, especially with regard to HPC. That is mostly due to a concerted effort by NVIDIA to establish CUDA as the dominant programming framework for GPU application development in this realm..

AMD has been the most vocal booster of OpenCL technology for technical computing, but it’s lack of a competitive product set for high-end GPU computing has muted that message. Thus far, OpenCL usage has been mostly relegated to client-side computing, especially for mobile platforms, which have increasingly incorporated GPU silicon into their designs. Apple, who initially developed OpenCL before handing it off to the open-standard Khronos Group, was instrumental in getting the technology off the ground.

The knock on OpenCL for HPC users has been lack of maturity, which has resulted in low performance, compared to CUDA. There is also the perception that support from the principle HPC chipmakers (Intel, AMD and NVIDIA) would be less than enthusiastic, at least for their high-end processors. In many ways, that’s still true, given that NVIDIA is devoting most of its attention to its home-grown CUDA software, while Intel seems to have settled on its own parallel programming frameworks, mainly Cilk Plus and Threading Building Blocks.

AMD though, continues to champion OpenCL, and some of their more recent compiler and library releases have improved performance considerably. In fact, Kyle Spafford, from the Future Technology Group at Oak Ridge National Lab (ORNL), has been benchmarking the two technologies for some time and is now convinced that OpenCL performance is now on par with that of CUDA. He recently presented his findings at Georgia Tech’s Keeneland Workshop.

Spafford’s ran ORNL’s Scalable Heterogeneous Computing Benchmark Suite (SHOC) that has been optimized for both CUDA and OpenCL, and found that OpenCL can match CUDA performance on most of the basic math kernels. He also found that OpenCL’s performance on some kernels, like SGEMM, has increased 10-fold since 2009. The one code that CUDA still has a significant performance advantage is that of the Fast Fourier Transform (FFT). Spafford attributes CUDA’s better FFT performance on its use of a fast intrinsic, with OpenCL implementation (NVIDIA’s in this case*) employing a slower, more accurate version. If the implementations are matched, the performance difference goes away, says Spafford.

Others have found similar behavior on stand-alone science applications. A research group at Dartmouth running a numerical model of gravitation waves with OpenCL and CUDA found similar performance between OpenCL and CUDA, in this case on Tesla GPUs and IBM’s Cell BE processors. In the resulting paper, the researchers conclude that “an OpenCL-based implementation delivers comparable performance to that based on a native SDK on both types of accelerator hardware.”

GPU software maker AccelerEyes has seen CUDA and OpenCL performance equalize. The company, which recently released OpenCL-powered beta versions of their two flagship software products, ArrayFire and Jacket, has found that for most kernel codes, the two technologies now exhibit similar performance. Like ORNL, they found FFT speed is still better on CUDA due to NVIDIA’s faster implementation, but AMD’s OpenCL compiler and libraries have improved considerably, both in scope and performance.

According to AccelerEyes CEO John Melonakos, over half of their customers develop their GPU-accelerated code on their PCs before deploying to a workstation or cluster, so the ability to support non-NVIDIA hardware can be quite useful. For example, customers using MacBooks as development platforms couldn’t run CUDA there because Apple has no NVIDIA GPU option on its latest laptops. And since the AMD OpenCL libraries that AccelerEyes used in their beta offerings work just fine on Intel CPUs, AMD CPUs, and NVIDIA GPUs, there are no hardware incompatibility issues.

Then there are users who are just unwilling to adopt vendor-specific software stacks such as CUDA. “There are a class of people who absolutely want to do GPU computing but are resistant to anything that is vendor-locked,” Melonakos told HPCwire. He says this is group that has jumped onto their OpenCL-based offerings first.

To counter that kind of perception, NVIDIA has recently opened up the CUDA compiler source code for third-party developers. Significantly though, NVIDIA is not putting its all-important CUDA math libraries, like CUBLAS and CUFFT, into the open source pot. According to Melonakos, the large and mature library set is CUDA’s real strength in the technical computing arena. Open source or not, NVIDIA still retains control of the CUDA software technology, which is why it is still perceived as a vendor-specific solution.

Even NVIDIA and Intel are hedging their bets with OpenCL though, with both vendors offering software hooks for their respective hardware. At this point, these companies are providing this support as a nod to their mobile computing developers (although Intel is reportedly working on a MIC processor port too). But since there is an increasing amount of cross-pollination between mobile and HPC these days, it’s not clear how developers will end up using these technologies.

In fact, if the mobile space latches onto OpenCL in a big way and it becomes the standard low-level solution for heterogenous computing, that could help speed its adoption at the high-end. Once OpenCL reaches a critical mass of acceptance in a volume market such as that, there will be a rapid increase in demand for robust compilers and libraries. As Melonakos put it: “I dont think OpenCL is going away.”

[Editor’s note: The original article erroneously stated that the SHOC benchmark work used AMD’s implementation of OpenCL, rather than NVIDIA’s. We regret the error.]

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This