Cray Parlays Supercomputing Technology Into Big Data Appliance

By Michael Feldman

March 1, 2012

For the first time in its history, Cray has built something other than a supercomputer. On Wednesday, the company’s newly hatched YarcData division launched “uRiKA,” a hardware-software solution aimed at real-time knowledge discovery with terascale-sized data sets. The system is designed to serve businesses and government agencies that need to do high-end analytics in areas as diverse as social networking, financial management, healthcare, supply chain management, and national security.

As befits Cray’s MO, their target market for uRiKA, (pronounced Eureka) is slanted toward the cutting edge. It uses a graph-based data approach to do interactive analytics with large, complex, and often dynamic data sets. “We are not trying to be everything for everybody,” says YarcData general manager Arvind Parthasarathi.

Unlike Hadoop cluster implementations, which parallelizes queries across large cluster farms, uRiKA is a monolithic system with a lots of shared memory and massively multithreading processing. The supercomputer-style architecture allows uRiKA to load entire data sets into RAM and process them with hundreds or even thousands of threads. The idea is the avoid the performance penalty of dividing the database into pieces and processing it across disparate memory spaces. In such an environment, if a piece of a query on one node needs to talk to another piece on another node, communication has to be initiated across the network, which can be 100 times slower than a memory access.

The underlying hardware for uRiKA is Cray’s second generation XMT (previously known as XMT-2), which the company’s professional services group has been cranking on for the past three years. According to Shoaib Mufti, YarcData’s VP of Research & Development, the YarcData appliance repurposes the XT5 supercomputer infrastructure, including the AMD-style socket and SeaStar2 interconnect. Unlike the Opteron-powered XT5 though, uRiKA uses Cray’s latest custom-built Threadstorm processor, which supports 128 threads per chip and a memory reach of 512 TB. Processors and memory can be scaled independently, say Mufti.

Further boosting performance is the Threadstorm’s ability to support very fine-grained synchronization to hide latencies across threads. Merv Adrian, Research VP, of Information Management, at Gartner thinks that uRiKA hardware will be able to operate at speeds typical database appliances can’t match. “Processors will not wait on disk I/O, or even typical memory latency,” he says adding that the combo of hardware and software on uRiKA will “allow the company to target different, very challenging use cases.”

Up to 8,000 processors can be loaded on a single system, which would allow an application to scale to over a million threads. Most systems won’t approach anything of that size, though. “Our HPC customers tend to have a lot of processors,” says Mufti. “Here the customers we’re targeting tend to need a lot of memory.” That’s because the data sets YarcData has in mind are things like social media databases, financial asset portfolios, and genomic maps that span entire populations.

More to the point, uRiKA is designed to analyze graphs rather than simple tabular databases. A graph, one of the fundamental data abstractions in computer science, is basically a structure whose objects are linked together by some relationship. It is especially suited to structures like website links, social networks, and genetic maps — essentially any data set where the relationships between the objects are as important as the objects themselves.

This type of application exists further up the analytics food change than most business intelligence or data mining applications. In general, a lot of these more traditional applications involve searching for particular items or deriving simple relationships. The YarcData technology is focused on relationship discovery. And since it’s uses graph structures, the system can support graph-based reasoning and deductions to uncover new relationships.

A typical example is pattern-based queries — does x resemble y? This might not lead to a definitive answer, but will provide a range of possibilities, which can then be further refined. So, for example, one of the YarcData’s early customers is a government agency that is interested in finding “persons of interest.” They maintain profiles of terrorists, criminals or other ne’er-do-wells, and are using uRiKA to search for patterns of specific behaviors and activities. A credit card company could use the same basic algorithms to search for fraudulent transactions.

YarcData uses the term “relationship analytics” to describe this approach. While that might sound a bit Oprah-ish, it certainly emphasizes the importance of extracting knowledge from how the objects are connected rather than just their content. This is not to be confused with relational databases, which are organized in tabular form and use simpler forms of querying.

In fact, according to YarcData’s Parthasarathi, relational databases are not well suited to the kinds of large-scale, real-time data analysis uRiKA is designed for. He says it’s possible to shoehorn these applications into a relational databases using more traditional RDBMS tools, but the model just doesn’t scale very well as the data and relationship complexities grow. Especially if you’re looking to interact with the data in real time, it just takes too long, says Parthasarathi.

Parthasarathi also argues that traditional in-memory database platforms just don’t have enough memory to do graph problems. A single server might be able to be outfitted with a few terabytes, but once the data size grows beyond that, you have to start fetching bytes from external storage. And since graph analytics is non-deterministic, there’s no way to figure out which data should be pre-fetched or cached for a given query.

Being able to swallow an entire graph into memory is uRiKA’s biggest advantage over other architectures, but the system is also capable of ingesting data from secondary storage. Many of applications require this since their data is often very dynamic in nature (think of a financial trading system where asset values are constantly in motion). To deal meet that need, uRiKA offers a high performance storage subsystem that can deliver transfer rates of up to 350 TB/hour.

After data is ingested, it needs to be converted to an internal format called RDF, or Resource Description Framework (in case you were wondering, uRiKA stands for Universal RDF Integration Knowledge Appliance), an industry standard graph format for representing information in the Web. According to Mufti, they are providing tools for RDF data conversion and are also laying the groundwork for a standards-based software that allows for third-party conversion tools.

Industry standard is a common theme here. uRiKA’s software internals include SUSE Linux, Java, Apache, WS02, Google Gadgets, and Relfinder. That stack of interfaces allows users to write or port analytics applications to the platform without having to come up with a uRiKA-specific implementation. So Java, J2EE, SPARQL, and Gadget apps are all fair game. YarcData thinks this will be key to encouraging third-party developers to build applications on top of the system, since it doesn’t require them to use a whole new programming language or API.

The announcement this week pointed to five initial uRiKA customers. Besides the unnamed government agency mentioned previously, early adopters include the Institute of Systems Biology, which is targeting it for drug discovery; Noblis, which is engaged with various US government agencies to help develop a range graph database applications on the platform; the Swiss National Supercomputing Center (CSCS), which is using the system for scientific data analysis; and the Mayo Clinic, which intends to use uRiKA to pattern-match patients in order to optimize treatment regimes.

The latter application is reminiscent of IBM Watson’s work at Wellpoint, where the goal is to use the DeepQA expert system technology to suggest patient diagnosis and treatment options for doctors. In Watson’s case, the hardware and software architecture are completely different from that of uRiKA, but the level of analytics is of the same order. Like IBM, Cray is looking to establish its analytics technology across multiple verticals. In the future, YarcData intends to offer appliances with integrated software that targets specific application domains, like drug discovery, patient matching, and event-based trading.

Pricing on uRiKA configurations has not be made public, but according to Parthasarathi, a low-end setup will cost in the low hundreds of thousands of dollars. That probably corresponds to their baseline configuration of 16 Threadstorm processors and half a terabyte of memory. Additional memory and/or processors could easily push that into the million-dollar range, but considering there are no other systems on the market that sport terascale graph-based analytics, that could end up being a bargain.

Related articles

Cray Opens Doors on Big Data Developments

Can Supercomputing Help Cure Health Care?

Cray Pushes XMT Supercomputer Into the Limelight

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Cray+Azure: Can Cloud Propel Supercomputing?

October 23, 2017

Cray and Microsoft today announced they will offer dedicated Cray supercomputers (the XC and CS-Storm lines) inside the Azure platform allowing customers to run their HPC and AI applications alongside their other cloud w Read more…

By Tiffany Trader

2017 Gordon Bell Prize Finalists Named

October 23, 2017

The three finalists for this year’s Gordon Bell Prize in High Performance Computing have been announced. They include two papers on projects run on China’s Sunway TaihuLight system and a third paper on 3D image recon Read more…

By John Russell

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Cray+Azure: Can Cloud Propel Supercomputing?

October 23, 2017

Cray and Microsoft today announced they will offer dedicated Cray supercomputers (the XC and CS-Storm lines) inside the Azure platform allowing customers to run Read more…

By Tiffany Trader

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This