Cray Parlays Supercomputing Technology Into Big Data Appliance

By Michael Feldman

March 1, 2012

For the first time in its history, Cray has built something other than a supercomputer. On Wednesday, the company’s newly hatched YarcData division launched “uRiKA,” a hardware-software solution aimed at real-time knowledge discovery with terascale-sized data sets. The system is designed to serve businesses and government agencies that need to do high-end analytics in areas as diverse as social networking, financial management, healthcare, supply chain management, and national security.

As befits Cray’s MO, their target market for uRiKA, (pronounced Eureka) is slanted toward the cutting edge. It uses a graph-based data approach to do interactive analytics with large, complex, and often dynamic data sets. “We are not trying to be everything for everybody,” says YarcData general manager Arvind Parthasarathi.

Unlike Hadoop cluster implementations, which parallelizes queries across large cluster farms, uRiKA is a monolithic system with a lots of shared memory and massively multithreading processing. The supercomputer-style architecture allows uRiKA to load entire data sets into RAM and process them with hundreds or even thousands of threads. The idea is the avoid the performance penalty of dividing the database into pieces and processing it across disparate memory spaces. In such an environment, if a piece of a query on one node needs to talk to another piece on another node, communication has to be initiated across the network, which can be 100 times slower than a memory access.

The underlying hardware for uRiKA is Cray’s second generation XMT (previously known as XMT-2), which the company’s professional services group has been cranking on for the past three years. According to Shoaib Mufti, YarcData’s VP of Research & Development, the YarcData appliance repurposes the XT5 supercomputer infrastructure, including the AMD-style socket and SeaStar2 interconnect. Unlike the Opteron-powered XT5 though, uRiKA uses Cray’s latest custom-built Threadstorm processor, which supports 128 threads per chip and a memory reach of 512 TB. Processors and memory can be scaled independently, say Mufti.

Further boosting performance is the Threadstorm’s ability to support very fine-grained synchronization to hide latencies across threads. Merv Adrian, Research VP, of Information Management, at Gartner thinks that uRiKA hardware will be able to operate at speeds typical database appliances can’t match. “Processors will not wait on disk I/O, or even typical memory latency,” he says adding that the combo of hardware and software on uRiKA will “allow the company to target different, very challenging use cases.”

Up to 8,000 processors can be loaded on a single system, which would allow an application to scale to over a million threads. Most systems won’t approach anything of that size, though. “Our HPC customers tend to have a lot of processors,” says Mufti. “Here the customers we’re targeting tend to need a lot of memory.” That’s because the data sets YarcData has in mind are things like social media databases, financial asset portfolios, and genomic maps that span entire populations.

More to the point, uRiKA is designed to analyze graphs rather than simple tabular databases. A graph, one of the fundamental data abstractions in computer science, is basically a structure whose objects are linked together by some relationship. It is especially suited to structures like website links, social networks, and genetic maps — essentially any data set where the relationships between the objects are as important as the objects themselves.

This type of application exists further up the analytics food change than most business intelligence or data mining applications. In general, a lot of these more traditional applications involve searching for particular items or deriving simple relationships. The YarcData technology is focused on relationship discovery. And since it’s uses graph structures, the system can support graph-based reasoning and deductions to uncover new relationships.

A typical example is pattern-based queries — does x resemble y? This might not lead to a definitive answer, but will provide a range of possibilities, which can then be further refined. So, for example, one of the YarcData’s early customers is a government agency that is interested in finding “persons of interest.” They maintain profiles of terrorists, criminals or other ne’er-do-wells, and are using uRiKA to search for patterns of specific behaviors and activities. A credit card company could use the same basic algorithms to search for fraudulent transactions.

YarcData uses the term “relationship analytics” to describe this approach. While that might sound a bit Oprah-ish, it certainly emphasizes the importance of extracting knowledge from how the objects are connected rather than just their content. This is not to be confused with relational databases, which are organized in tabular form and use simpler forms of querying.

In fact, according to YarcData’s Parthasarathi, relational databases are not well suited to the kinds of large-scale, real-time data analysis uRiKA is designed for. He says it’s possible to shoehorn these applications into a relational databases using more traditional RDBMS tools, but the model just doesn’t scale very well as the data and relationship complexities grow. Especially if you’re looking to interact with the data in real time, it just takes too long, says Parthasarathi.

Parthasarathi also argues that traditional in-memory database platforms just don’t have enough memory to do graph problems. A single server might be able to be outfitted with a few terabytes, but once the data size grows beyond that, you have to start fetching bytes from external storage. And since graph analytics is non-deterministic, there’s no way to figure out which data should be pre-fetched or cached for a given query.

Being able to swallow an entire graph into memory is uRiKA’s biggest advantage over other architectures, but the system is also capable of ingesting data from secondary storage. Many of applications require this since their data is often very dynamic in nature (think of a financial trading system where asset values are constantly in motion). To deal meet that need, uRiKA offers a high performance storage subsystem that can deliver transfer rates of up to 350 TB/hour.

After data is ingested, it needs to be converted to an internal format called RDF, or Resource Description Framework (in case you were wondering, uRiKA stands for Universal RDF Integration Knowledge Appliance), an industry standard graph format for representing information in the Web. According to Mufti, they are providing tools for RDF data conversion and are also laying the groundwork for a standards-based software that allows for third-party conversion tools.

Industry standard is a common theme here. uRiKA’s software internals include SUSE Linux, Java, Apache, WS02, Google Gadgets, and Relfinder. That stack of interfaces allows users to write or port analytics applications to the platform without having to come up with a uRiKA-specific implementation. So Java, J2EE, SPARQL, and Gadget apps are all fair game. YarcData thinks this will be key to encouraging third-party developers to build applications on top of the system, since it doesn’t require them to use a whole new programming language or API.

The announcement this week pointed to five initial uRiKA customers. Besides the unnamed government agency mentioned previously, early adopters include the Institute of Systems Biology, which is targeting it for drug discovery; Noblis, which is engaged with various US government agencies to help develop a range graph database applications on the platform; the Swiss National Supercomputing Center (CSCS), which is using the system for scientific data analysis; and the Mayo Clinic, which intends to use uRiKA to pattern-match patients in order to optimize treatment regimes.

The latter application is reminiscent of IBM Watson’s work at Wellpoint, where the goal is to use the DeepQA expert system technology to suggest patient diagnosis and treatment options for doctors. In Watson’s case, the hardware and software architecture are completely different from that of uRiKA, but the level of analytics is of the same order. Like IBM, Cray is looking to establish its analytics technology across multiple verticals. In the future, YarcData intends to offer appliances with integrated software that targets specific application domains, like drug discovery, patient matching, and event-based trading.

Pricing on uRiKA configurations has not be made public, but according to Parthasarathi, a low-end setup will cost in the low hundreds of thousands of dollars. That probably corresponds to their baseline configuration of 16 Threadstorm processors and half a terabyte of memory. Additional memory and/or processors could easily push that into the million-dollar range, but considering there are no other systems on the market that sport terascale graph-based analytics, that could end up being a bargain.

Related articles

Cray Opens Doors on Big Data Developments

Can Supercomputing Help Cure Health Care?

Cray Pushes XMT Supercomputer Into the Limelight

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This