Intel Releases Sandy Bridge Server CPUs Into the Wild

By Michael Feldman

March 7, 2012

Intel officially launched its new Xeon E5-2600 processor family on Tuesday, months after the chips had been deployed in supercomputers at several major HPC sites around the world. The new CPU represents the company’s latest Xeon offering for dual-socket servers, and boasts a number of new features including better performance, a new floating point instruction set in AVX, and integrated I/O. The processor will be a formidable competitor in the server chip battle with AMD.

Intel is touting 80 percent better performance for the E5-2600 CPUs (aka Sandy Bridge-EP) compared to the older Xeon 5600 (Westmere-EP) parts, and is promising better energy efficiency as well. In fact, according to Diane Bryant, the new vice president, general manager of Intel’s, Datacenter and Connected Systems Group, the E5-2600 family is tops in squeezing ops from watts. “We continue to deliver the best performance per watt,” she told a crowd of press and analysts at the E5 launch on Tuesday.

AMD might take issue with that, not to mention NVIDIA, Fujitsu, Tilera, and IBM, who also offer energy-sipping chips for the server space. For delivering raw flops, IBM’s Blue Gene/Q ASIC, is probably the most energy-efficient chip on the planet right now. That aside, in the x86 server universe, the new Xeon will be hard to beat.

The E5-2600 represents a microarchitecture refresh for the Xeon line, replacing the Nehalem-architected chips with the new Sandy Bridge design — a “tock” in Intel’s tick-tock vernacular. Maximum core count has been increased to 8, with 2-, 4-, and 6-core flavors offered as well. The fastest clock is achieved by the quad-core E5-2643, which runs at 3.3 GHz. That’s actually a retreat from the older Xeon 5600 CPUs, which topped out at 3.6 GHz, but thanks to the Turbo Boost technology, maximum clock frequencies are pretty much on par.

The memory subsystem was likewise enhanced. To boost bandwidth, Intel added a 4th memory channel and support for faster memory modules (1600 MHz). The design also allows for up to 12 DIMMs per socket, and since 32GB DIMM support has been added, a dual-socket server could be outfitted with as much as 768 GB. The older Westmere dual-socket servers topped out at 288 GB.

Of course, with modern microprocessors, the goal is to keep as much data in cache as possible to avoid CPU stalls when accessing main memory. With that in mind, Intel increased cache capacity on both an absolute and per-core basis.

The new 8-core E5-2600 parts are outfitted with 20 MB of last level cache versus 12 MB on the 6-core 5600 Xeons. In general, Intel used a cache/core ratio of 2.5:1 for the E5-2600 design: the 6-core, 4-core, and 2-core CPUs come with 15 (or 12), 10, and 5 MB of cache, respectively. That doesn’t necessarily mean the new Xeons are more cache-rich in every case. You can still buy some quad-core Xeon 5600 products that sports 12 MB of cache, which works out to 3 MB per core.

With regard to I/O, Intel did some consolidation here, bringing what used to be discrete chips onto the processor. For example, the new Xeon integrates 40 lanes of PCIe 3.0 onto the die. Not only does 3.0 double the bandwidth of PCIe 2.0, but since Intel incorporated the functionality on-chip, device-to-processor communication latency will be much reduced.

The E5-2600 also puts the I/O hub onto the CPU, which now includes something called “Data Direct I/O,” a capability that allows Ethernet and InfiniBand adapters to route traffic directly to the cache, bypassing the trip to main memory. According to Intel, this setup reduces I/O latency by as much as 30 percent, while also lowering the power draw.

To boost floating point (FP) performance, Intel came up with AVX (Advanced Vector Extensions), a 256-bit instruction set that effectively doubles FP throughput. This will be especially useful for HPC codes like scientific simulations and financial analytics, but also for applications in image, audio, and video processing for pattern recognition and signal processing.

Legacy codes won’t automatically realize AVX performance gains out of the box, though. At the very least, source code will have to be recompiled, hopefully with a compiler capable of auto-vectorization that can deal with the double-wide vectors. In some cases though, the code itself will need to be modified to squeeze the most performance from AVX.

The goal behind all these hardware enhancements — more cores, memory, and cache, AVX, and integrated I/O — is to deliver a much faster chip. As mentioned before, Intel is saying the E5-2600 delivers 80 percent better performance than the older Xeons. However, that metric is based on the SPECfp_rate_base2006 floating point benchmark, so obviously your mileage will vary.

DreamWorks Animation, for example, has seen a 35 percent speed boost for their rendering application compared to the older Xeon technology — that according to Derek Chan, who heads DreamWorks’s digital operations. The new E5-2600 servers are being used to develop DreamWorks’ latest feature film, Madagascar 3, which Chan said will take over 60 million CPU-hours to render. For DreamWorks, faster rendering not only saves time and money, but also give the artists more creative headroom.

Codes that are more FP-intensive, like LS-DYNA, (a software package that encompasses structural and fluid analysis simulation for manufacturing, automobile/aerospace, biotech, and scientific research) should do even better. The benchmarking crew at AnandTech ran two LS-DYNA codes with some of the E5-2600 chips and reported that the new Xeons were the top performers in the x86 field.

According to AnandTech, a Xeon E5-2690 was about twice as fast as the older Xeon 5650 on the both LS-DYNA benchmarks and was about 50 percent faster than AMD’s new Opteron 6276 (“Interlagos”) CPU. Note that against the AMD chip, the new Intel offering seemed to benefit mostly from its faster clock (2.9 GHz for the Xeon versus 2.3 GHz for the Opteron), but even the slightly slower E5-2660 chip, at 2.2 GHz, edged out the faster clocked Opteron 6276. AMD is will get another shot at Intel this year with “Abu Dhabi,” the company’s next-generation Opteron, which it plans to launch in the second half of 2012.

In the meantime, Intel will continue to dominate the x86 server space. According to Bryant, the E5-2600 already has 400 design wins, with these spread across servers, storage, and network boxes. In the HPC server space, all the usual suspects have bought into the new Xeons, including IBM, HP, Dell, SGI, Bull, Appro, Fujitsu, Supermicro, NEC, Inspur, Lenovo, Acer, ASUS, and AMAX.

HP, Appro and Bull have already shipped a total of ten TOP500-class supercomputers last year based on the E5-2600 parts, before the CPUs even had their official name. These new machines include SDSC’s new Gordon supercomputer, the Helios machine deployed at Japan’s International Fusion Energy Research Center, and a very large Amazon EC2 cluster. The largest is the “Zin” system at Lawrence Livermore National Lab, which is equipped with 5,776 of the new chips and is just shy of 1 peak petaflop*.

Pricing on the chips ranges from $294 for a couple of the quad-core parts, all the way up to $2,057 for the top-of-the line E5-2690, an 8-core, 135W CPU clocked at 2.9 GHz. None of the supercomputers mentioned above used the E5-2690, by the way; all were outfitted with 2.6 GHz or 2.7 GHz 8-core parts, which are $300-500 less expensive and run 5 to 20 watts cooler. At this point, those Xeons probably represent the price-performance and performance/watt sweet spots for HPC.

*Update: There are actually two petascale systems outfitted with the Xeon E5-2600 processors now. Helios, which is in production at the International Fusion Energy Research Centre (IFERC) in Japan, is now fully operational and is equipped with 8,820 of the CPUs; and the Curie supercomputer at GENCI in France, contains 10,080 of the Sandy Bridge processors.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This