Intel Releases Sandy Bridge Server CPUs Into the Wild

By Michael Feldman

March 7, 2012

Intel officially launched its new Xeon E5-2600 processor family on Tuesday, months after the chips had been deployed in supercomputers at several major HPC sites around the world. The new CPU represents the company’s latest Xeon offering for dual-socket servers, and boasts a number of new features including better performance, a new floating point instruction set in AVX, and integrated I/O. The processor will be a formidable competitor in the server chip battle with AMD.

Intel is touting 80 percent better performance for the E5-2600 CPUs (aka Sandy Bridge-EP) compared to the older Xeon 5600 (Westmere-EP) parts, and is promising better energy efficiency as well. In fact, according to Diane Bryant, the new vice president, general manager of Intel’s, Datacenter and Connected Systems Group, the E5-2600 family is tops in squeezing ops from watts. “We continue to deliver the best performance per watt,” she told a crowd of press and analysts at the E5 launch on Tuesday.

AMD might take issue with that, not to mention NVIDIA, Fujitsu, Tilera, and IBM, who also offer energy-sipping chips for the server space. For delivering raw flops, IBM’s Blue Gene/Q ASIC, is probably the most energy-efficient chip on the planet right now. That aside, in the x86 server universe, the new Xeon will be hard to beat.

The E5-2600 represents a microarchitecture refresh for the Xeon line, replacing the Nehalem-architected chips with the new Sandy Bridge design — a “tock” in Intel’s tick-tock vernacular. Maximum core count has been increased to 8, with 2-, 4-, and 6-core flavors offered as well. The fastest clock is achieved by the quad-core E5-2643, which runs at 3.3 GHz. That’s actually a retreat from the older Xeon 5600 CPUs, which topped out at 3.6 GHz, but thanks to the Turbo Boost technology, maximum clock frequencies are pretty much on par.

The memory subsystem was likewise enhanced. To boost bandwidth, Intel added a 4th memory channel and support for faster memory modules (1600 MHz). The design also allows for up to 12 DIMMs per socket, and since 32GB DIMM support has been added, a dual-socket server could be outfitted with as much as 768 GB. The older Westmere dual-socket servers topped out at 288 GB.

Of course, with modern microprocessors, the goal is to keep as much data in cache as possible to avoid CPU stalls when accessing main memory. With that in mind, Intel increased cache capacity on both an absolute and per-core basis.

The new 8-core E5-2600 parts are outfitted with 20 MB of last level cache versus 12 MB on the 6-core 5600 Xeons. In general, Intel used a cache/core ratio of 2.5:1 for the E5-2600 design: the 6-core, 4-core, and 2-core CPUs come with 15 (or 12), 10, and 5 MB of cache, respectively. That doesn’t necessarily mean the new Xeons are more cache-rich in every case. You can still buy some quad-core Xeon 5600 products that sports 12 MB of cache, which works out to 3 MB per core.

With regard to I/O, Intel did some consolidation here, bringing what used to be discrete chips onto the processor. For example, the new Xeon integrates 40 lanes of PCIe 3.0 onto the die. Not only does 3.0 double the bandwidth of PCIe 2.0, but since Intel incorporated the functionality on-chip, device-to-processor communication latency will be much reduced.

The E5-2600 also puts the I/O hub onto the CPU, which now includes something called “Data Direct I/O,” a capability that allows Ethernet and InfiniBand adapters to route traffic directly to the cache, bypassing the trip to main memory. According to Intel, this setup reduces I/O latency by as much as 30 percent, while also lowering the power draw.

To boost floating point (FP) performance, Intel came up with AVX (Advanced Vector Extensions), a 256-bit instruction set that effectively doubles FP throughput. This will be especially useful for HPC codes like scientific simulations and financial analytics, but also for applications in image, audio, and video processing for pattern recognition and signal processing.

Legacy codes won’t automatically realize AVX performance gains out of the box, though. At the very least, source code will have to be recompiled, hopefully with a compiler capable of auto-vectorization that can deal with the double-wide vectors. In some cases though, the code itself will need to be modified to squeeze the most performance from AVX.

The goal behind all these hardware enhancements — more cores, memory, and cache, AVX, and integrated I/O — is to deliver a much faster chip. As mentioned before, Intel is saying the E5-2600 delivers 80 percent better performance than the older Xeons. However, that metric is based on the SPECfp_rate_base2006 floating point benchmark, so obviously your mileage will vary.

DreamWorks Animation, for example, has seen a 35 percent speed boost for their rendering application compared to the older Xeon technology — that according to Derek Chan, who heads DreamWorks’s digital operations. The new E5-2600 servers are being used to develop DreamWorks’ latest feature film, Madagascar 3, which Chan said will take over 60 million CPU-hours to render. For DreamWorks, faster rendering not only saves time and money, but also give the artists more creative headroom.

Codes that are more FP-intensive, like LS-DYNA, (a software package that encompasses structural and fluid analysis simulation for manufacturing, automobile/aerospace, biotech, and scientific research) should do even better. The benchmarking crew at AnandTech ran two LS-DYNA codes with some of the E5-2600 chips and reported that the new Xeons were the top performers in the x86 field.

According to AnandTech, a Xeon E5-2690 was about twice as fast as the older Xeon 5650 on the both LS-DYNA benchmarks and was about 50 percent faster than AMD’s new Opteron 6276 (“Interlagos”) CPU. Note that against the AMD chip, the new Intel offering seemed to benefit mostly from its faster clock (2.9 GHz for the Xeon versus 2.3 GHz for the Opteron), but even the slightly slower E5-2660 chip, at 2.2 GHz, edged out the faster clocked Opteron 6276. AMD is will get another shot at Intel this year with “Abu Dhabi,” the company’s next-generation Opteron, which it plans to launch in the second half of 2012.

In the meantime, Intel will continue to dominate the x86 server space. According to Bryant, the E5-2600 already has 400 design wins, with these spread across servers, storage, and network boxes. In the HPC server space, all the usual suspects have bought into the new Xeons, including IBM, HP, Dell, SGI, Bull, Appro, Fujitsu, Supermicro, NEC, Inspur, Lenovo, Acer, ASUS, and AMAX.

HP, Appro and Bull have already shipped a total of ten TOP500-class supercomputers last year based on the E5-2600 parts, before the CPUs even had their official name. These new machines include SDSC’s new Gordon supercomputer, the Helios machine deployed at Japan’s International Fusion Energy Research Center, and a very large Amazon EC2 cluster. The largest is the “Zin” system at Lawrence Livermore National Lab, which is equipped with 5,776 of the new chips and is just shy of 1 peak petaflop*.

Pricing on the chips ranges from $294 for a couple of the quad-core parts, all the way up to $2,057 for the top-of-the line E5-2690, an 8-core, 135W CPU clocked at 2.9 GHz. None of the supercomputers mentioned above used the E5-2690, by the way; all were outfitted with 2.6 GHz or 2.7 GHz 8-core parts, which are $300-500 less expensive and run 5 to 20 watts cooler. At this point, those Xeons probably represent the price-performance and performance/watt sweet spots for HPC.

*Update: There are actually two petascale systems outfitted with the Xeon E5-2600 processors now. Helios, which is in production at the International Fusion Energy Research Centre (IFERC) in Japan, is now fully operational and is equipped with 8,820 of the CPUs; and the Curie supercomputer at GENCI in France, contains 10,080 of the Sandy Bridge processors.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

“For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Read more…

By Oliver Peckham

Xilinx Says Its New FPGA is World’s Largest

August 21, 2019

In this age of exploding “technology disaggregation” – in which the Big Bang emanating from the Intel x86 CPU has produced significant advances in CPU chips and a raft of alternative, accelerated architectures... Read more…

By Doug Black

Supercomputers Generate Universes to Illuminate Galactic Formation

August 20, 2019

With advanced imaging and satellite technologies, it’s easier than ever to see a galaxy – but understanding how they form (a process that can take billions of years) is a different story. Now, a team of researchers f Read more…

By Oliver Peckham

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Keys to Attracting the Newest HPC Talent – Post-Millennials

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

For engineers and scientists growing up in the 80s, the current state of HPC makes perfect sense. Read more…

Singularity Moves Up the Container Value Chain

August 20, 2019

The enterprise version of the Singularity HPC container platform released this week by Sylabs is designed to allow users to create, secure and share the high-end containers in self-hosted production deployments. The e Read more…

By George Leopold

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

“For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Read more…

By Oliver Peckham

IBM Deepens Plunge into Open Source; OpenPOWER to Join Linux Foundation

August 20, 2019

IBM today announced it was contributing the instruction set (ISA) for its Power microprocessor and the designs for the Open Coherent Accelerator Processor Inter Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Intel 7nm GPU on Roadmap for 2021, OneAPI Coming This Year

May 8, 2019

At Intel's investor meeting today in Santa Clara, Calif., the company filled in details of its roadmap and product launch plans and sought to allay concerns about delays of its 10nm chips. In laying out its 10nm and 7nm timelines, Intel revealed that its first 7nm product would be... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This