Intel Releases Sandy Bridge Server CPUs Into the Wild

By Michael Feldman

March 7, 2012

Intel officially launched its new Xeon E5-2600 processor family on Tuesday, months after the chips had been deployed in supercomputers at several major HPC sites around the world. The new CPU represents the company’s latest Xeon offering for dual-socket servers, and boasts a number of new features including better performance, a new floating point instruction set in AVX, and integrated I/O. The processor will be a formidable competitor in the server chip battle with AMD.

Intel is touting 80 percent better performance for the E5-2600 CPUs (aka Sandy Bridge-EP) compared to the older Xeon 5600 (Westmere-EP) parts, and is promising better energy efficiency as well. In fact, according to Diane Bryant, the new vice president, general manager of Intel’s, Datacenter and Connected Systems Group, the E5-2600 family is tops in squeezing ops from watts. “We continue to deliver the best performance per watt,” she told a crowd of press and analysts at the E5 launch on Tuesday.

AMD might take issue with that, not to mention NVIDIA, Fujitsu, Tilera, and IBM, who also offer energy-sipping chips for the server space. For delivering raw flops, IBM’s Blue Gene/Q ASIC, is probably the most energy-efficient chip on the planet right now. That aside, in the x86 server universe, the new Xeon will be hard to beat.

The E5-2600 represents a microarchitecture refresh for the Xeon line, replacing the Nehalem-architected chips with the new Sandy Bridge design — a “tock” in Intel’s tick-tock vernacular. Maximum core count has been increased to 8, with 2-, 4-, and 6-core flavors offered as well. The fastest clock is achieved by the quad-core E5-2643, which runs at 3.3 GHz. That’s actually a retreat from the older Xeon 5600 CPUs, which topped out at 3.6 GHz, but thanks to the Turbo Boost technology, maximum clock frequencies are pretty much on par.

The memory subsystem was likewise enhanced. To boost bandwidth, Intel added a 4th memory channel and support for faster memory modules (1600 MHz). The design also allows for up to 12 DIMMs per socket, and since 32GB DIMM support has been added, a dual-socket server could be outfitted with as much as 768 GB. The older Westmere dual-socket servers topped out at 288 GB.

Of course, with modern microprocessors, the goal is to keep as much data in cache as possible to avoid CPU stalls when accessing main memory. With that in mind, Intel increased cache capacity on both an absolute and per-core basis.

The new 8-core E5-2600 parts are outfitted with 20 MB of last level cache versus 12 MB on the 6-core 5600 Xeons. In general, Intel used a cache/core ratio of 2.5:1 for the E5-2600 design: the 6-core, 4-core, and 2-core CPUs come with 15 (or 12), 10, and 5 MB of cache, respectively. That doesn’t necessarily mean the new Xeons are more cache-rich in every case. You can still buy some quad-core Xeon 5600 products that sports 12 MB of cache, which works out to 3 MB per core.

With regard to I/O, Intel did some consolidation here, bringing what used to be discrete chips onto the processor. For example, the new Xeon integrates 40 lanes of PCIe 3.0 onto the die. Not only does 3.0 double the bandwidth of PCIe 2.0, but since Intel incorporated the functionality on-chip, device-to-processor communication latency will be much reduced.

The E5-2600 also puts the I/O hub onto the CPU, which now includes something called “Data Direct I/O,” a capability that allows Ethernet and InfiniBand adapters to route traffic directly to the cache, bypassing the trip to main memory. According to Intel, this setup reduces I/O latency by as much as 30 percent, while also lowering the power draw.

To boost floating point (FP) performance, Intel came up with AVX (Advanced Vector Extensions), a 256-bit instruction set that effectively doubles FP throughput. This will be especially useful for HPC codes like scientific simulations and financial analytics, but also for applications in image, audio, and video processing for pattern recognition and signal processing.

Legacy codes won’t automatically realize AVX performance gains out of the box, though. At the very least, source code will have to be recompiled, hopefully with a compiler capable of auto-vectorization that can deal with the double-wide vectors. In some cases though, the code itself will need to be modified to squeeze the most performance from AVX.

The goal behind all these hardware enhancements — more cores, memory, and cache, AVX, and integrated I/O — is to deliver a much faster chip. As mentioned before, Intel is saying the E5-2600 delivers 80 percent better performance than the older Xeons. However, that metric is based on the SPECfp_rate_base2006 floating point benchmark, so obviously your mileage will vary.

DreamWorks Animation, for example, has seen a 35 percent speed boost for their rendering application compared to the older Xeon technology — that according to Derek Chan, who heads DreamWorks’s digital operations. The new E5-2600 servers are being used to develop DreamWorks’ latest feature film, Madagascar 3, which Chan said will take over 60 million CPU-hours to render. For DreamWorks, faster rendering not only saves time and money, but also give the artists more creative headroom.

Codes that are more FP-intensive, like LS-DYNA, (a software package that encompasses structural and fluid analysis simulation for manufacturing, automobile/aerospace, biotech, and scientific research) should do even better. The benchmarking crew at AnandTech ran two LS-DYNA codes with some of the E5-2600 chips and reported that the new Xeons were the top performers in the x86 field.

According to AnandTech, a Xeon E5-2690 was about twice as fast as the older Xeon 5650 on the both LS-DYNA benchmarks and was about 50 percent faster than AMD’s new Opteron 6276 (“Interlagos”) CPU. Note that against the AMD chip, the new Intel offering seemed to benefit mostly from its faster clock (2.9 GHz for the Xeon versus 2.3 GHz for the Opteron), but even the slightly slower E5-2660 chip, at 2.2 GHz, edged out the faster clocked Opteron 6276. AMD is will get another shot at Intel this year with “Abu Dhabi,” the company’s next-generation Opteron, which it plans to launch in the second half of 2012.

In the meantime, Intel will continue to dominate the x86 server space. According to Bryant, the E5-2600 already has 400 design wins, with these spread across servers, storage, and network boxes. In the HPC server space, all the usual suspects have bought into the new Xeons, including IBM, HP, Dell, SGI, Bull, Appro, Fujitsu, Supermicro, NEC, Inspur, Lenovo, Acer, ASUS, and AMAX.

HP, Appro and Bull have already shipped a total of ten TOP500-class supercomputers last year based on the E5-2600 parts, before the CPUs even had their official name. These new machines include SDSC’s new Gordon supercomputer, the Helios machine deployed at Japan’s International Fusion Energy Research Center, and a very large Amazon EC2 cluster. The largest is the “Zin” system at Lawrence Livermore National Lab, which is equipped with 5,776 of the new chips and is just shy of 1 peak petaflop*.

Pricing on the chips ranges from $294 for a couple of the quad-core parts, all the way up to $2,057 for the top-of-the line E5-2690, an 8-core, 135W CPU clocked at 2.9 GHz. None of the supercomputers mentioned above used the E5-2690, by the way; all were outfitted with 2.6 GHz or 2.7 GHz 8-core parts, which are $300-500 less expensive and run 5 to 20 watts cooler. At this point, those Xeons probably represent the price-performance and performance/watt sweet spots for HPC.

*Update: There are actually two petascale systems outfitted with the Xeon E5-2600 processors now. Helios, which is in production at the International Fusion Energy Research Centre (IFERC) in Japan, is now fully operational and is equipped with 8,820 of the CPUs; and the Curie supercomputer at GENCI in France, contains 10,080 of the Sandy Bridge processors.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This