HP Scientists Envision 10-Teraflop Manycore Chip

By Michael Feldman

March 15, 2012

In high performance computing, Hewlett-Packard is best known for supplying bread-and-butter HPC systems, built with standard processors and interconnects. But the company’s research arm has been devising a manycore chipset, which would outrun the average-sized HPC cluster of today. The design represents a radical leap in performance, and if implemented, would fulfill the promise of exascale computing.

The architecture, known as Corona, first conceived back in 2008, consists of a 256-core CPU, an optical memory module, integrated nanophotonics and 3D chip stacking employing through-silicon-vias (TSVs). At peak output, Corona should deliver 10 teraflops of performance. That’s assuming 16 nm CMOS process technology, which is expected to be on tap by 2017.

The Corona design is aimed squarely at data-intensive types of application, whose speed is limited by the widening gap between CPU performance and available bandwidth to DRAM — the so-called memory wall. Basically any workload whose data does not fit into processor cache is a candidate. This includes not just traditional big data applications, but also a whole bunch of interesting HPC simulations and analytics codes that have to manipulate large or irregular data sets, and are thus memory-constrained.

At the CPU level, Corona contains 256 cores, each supporting up to four threads simultaneously. The Corona cores themselves are nothing exotic. The HP researchers originally assumed low-power Intel x86 Penryn and Silverthorne CPU core architectures for their design simulations, but presumably ARM or other low-power designs could be substituted.

The processor is divided into 16 quad-core “clusters,” with an integrated memory controller on every cluster. The rationale for the hierarchy is to ensure that memory bandwidth grows in concert with the core count and local memory access maintains low latency.

The processor is stacked with the memory controller/L2 cache, the analog electronics and the optical die (which includes on-chip lasers). Everything is hooked together by a 20 TB/sec dense wavelength division multiplexing (DWDM) crossbar, enabling cache coherency between cores, as well as superfast access to that cache.

The memory module, known as optically connected memory (OCM), is a separate chip stack made up of DRAM chips, plus the optical die and interface. It’s connected to the CPU stack at a still rather impressive 10 TB/sec.

To put that into perspective, the current crop of commercial processors have to get by with just a fraction of that bandwidth. The latest 8-core Intel E5-2600 Xeons, for example, can manage about 80 GB/sec of memory bandwidth and the SPARC64 VIIIfx CPU, of K computer fame, supports 64 GB/sec. Even GPUs, which generally support bigger memory pipes (but have to feed hundreds of cores), are bandwidth constrained. NVIDIA fastest Tesla card, the M2090, maxes out at 177 GB/sec.

The main function of Corona’s optical interconnect is to redress the worsening bytes-to-flop ratio that HPC’ers have been lamenting about for over a decade. For memory-constrained applications, it’s preferable to have a byte-to-flop ratio of at least one. Back in the good old days of the late 20th century, computers delivered 8 bytes or more per flop. Now, for current CPUs and GPUs, it’s down to between a half and a quarter of byte per flop.

The primary reasons for the poor ratio are the pin limitations on multicore processors, the inability to extend chip-level communication links across an entire node or computer, and the energy costs of electrical signaling. Photonics ameliorates these problems significantly since light is a much more efficient communication medium than electrons — something long-haul network providers discovered awhile ago.

Energy efficiency, in particular, is a hallmark of photonic communication. The HP researchers calculate that a memory system using an electrical interconnect to drive 10 GB/sec of data to DRAM would take 80 watts. Using nanophotonics and DRAMs optimized to read or write just a cache line at a time, they think they achieve the same bandwidth with just 8 watts.

The trick is to get the optical hardware down onto the silicon. Thanks to recent advances in integrated photonics, the technology is getting close. For example, the Corona design specifies crystalline and silicon dioxide for the wave guides, which are two commonly used materials in CMOS manufacturing. Slightly more exotic is the use of Germanium for the receptors (to absorb the light so that it can be converted back into electrical signals), a less often used, but still CMOS-compatible material. Finally, for the light source, the Corona designers opted for mode-locked lasers, since they believe a single device can provide up to 64 wavelengths of light for the DWDM interconnect.

Using the SPLASH-2, the second version of the Stanford Parallel Applications for Shared Memory benchmark suite, the HP researchers demonstrated a performance improvement of 2 to 6 times on Corona compared to a similar system outfitted with an electrical interconnect, and those speed increases were achieved using much less power. They also showed significant performance improvements on five of the six HPC Challenge benchmarks: PTRANS (22X), STREAM (19X), GUPS (19X), MPI (19X), FFT (2X). DGEMM, which is not bandwidth limited, showed no improvement.

It’s not all a slam dunk, however. 3D chipmaking and TSV technology is still a work in progress. And integrating photonic hardware using CMOS is in its infancy. But integrated photonics, 3D chip stacking, and the use of low-power cores for computation are all hot technologies now, especially for those in the supercomputing community looking down the road to exascale. The UHPC project (now apparently stuck in Phase 1) that was aimed at developing low-power extreme-scale computing, attracted proposals from Intel, MIT, NVIDIA, and Sandia that incorporated one or more of these technologies.

With Corona though, you get the whole package, so to speak. But all of the work to date appears to be with simulated hardware, and there was no mention in any of the research work of plans to create a working prototype. So whether this is destined to remain a research project at HP or something that gets transformed into a commercial offering remains to be seen.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This