HP Scientists Envision 10-Teraflop Manycore Chip

By Michael Feldman

March 15, 2012

In high performance computing, Hewlett-Packard is best known for supplying bread-and-butter HPC systems, built with standard processors and interconnects. But the company’s research arm has been devising a manycore chipset, which would outrun the average-sized HPC cluster of today. The design represents a radical leap in performance, and if implemented, would fulfill the promise of exascale computing.

The architecture, known as Corona, first conceived back in 2008, consists of a 256-core CPU, an optical memory module, integrated nanophotonics and 3D chip stacking employing through-silicon-vias (TSVs). At peak output, Corona should deliver 10 teraflops of performance. That’s assuming 16 nm CMOS process technology, which is expected to be on tap by 2017.

The Corona design is aimed squarely at data-intensive types of application, whose speed is limited by the widening gap between CPU performance and available bandwidth to DRAM — the so-called memory wall. Basically any workload whose data does not fit into processor cache is a candidate. This includes not just traditional big data applications, but also a whole bunch of interesting HPC simulations and analytics codes that have to manipulate large or irregular data sets, and are thus memory-constrained.

At the CPU level, Corona contains 256 cores, each supporting up to four threads simultaneously. The Corona cores themselves are nothing exotic. The HP researchers originally assumed low-power Intel x86 Penryn and Silverthorne CPU core architectures for their design simulations, but presumably ARM or other low-power designs could be substituted.

The processor is divided into 16 quad-core “clusters,” with an integrated memory controller on every cluster. The rationale for the hierarchy is to ensure that memory bandwidth grows in concert with the core count and local memory access maintains low latency.

The processor is stacked with the memory controller/L2 cache, the analog electronics and the optical die (which includes on-chip lasers). Everything is hooked together by a 20 TB/sec dense wavelength division multiplexing (DWDM) crossbar, enabling cache coherency between cores, as well as superfast access to that cache.

The memory module, known as optically connected memory (OCM), is a separate chip stack made up of DRAM chips, plus the optical die and interface. It’s connected to the CPU stack at a still rather impressive 10 TB/sec.

To put that into perspective, the current crop of commercial processors have to get by with just a fraction of that bandwidth. The latest 8-core Intel E5-2600 Xeons, for example, can manage about 80 GB/sec of memory bandwidth and the SPARC64 VIIIfx CPU, of K computer fame, supports 64 GB/sec. Even GPUs, which generally support bigger memory pipes (but have to feed hundreds of cores), are bandwidth constrained. NVIDIA fastest Tesla card, the M2090, maxes out at 177 GB/sec.

The main function of Corona’s optical interconnect is to redress the worsening bytes-to-flop ratio that HPC’ers have been lamenting about for over a decade. For memory-constrained applications, it’s preferable to have a byte-to-flop ratio of at least one. Back in the good old days of the late 20th century, computers delivered 8 bytes or more per flop. Now, for current CPUs and GPUs, it’s down to between a half and a quarter of byte per flop.

The primary reasons for the poor ratio are the pin limitations on multicore processors, the inability to extend chip-level communication links across an entire node or computer, and the energy costs of electrical signaling. Photonics ameliorates these problems significantly since light is a much more efficient communication medium than electrons — something long-haul network providers discovered awhile ago.

Energy efficiency, in particular, is a hallmark of photonic communication. The HP researchers calculate that a memory system using an electrical interconnect to drive 10 GB/sec of data to DRAM would take 80 watts. Using nanophotonics and DRAMs optimized to read or write just a cache line at a time, they think they achieve the same bandwidth with just 8 watts.

The trick is to get the optical hardware down onto the silicon. Thanks to recent advances in integrated photonics, the technology is getting close. For example, the Corona design specifies crystalline and silicon dioxide for the wave guides, which are two commonly used materials in CMOS manufacturing. Slightly more exotic is the use of Germanium for the receptors (to absorb the light so that it can be converted back into electrical signals), a less often used, but still CMOS-compatible material. Finally, for the light source, the Corona designers opted for mode-locked lasers, since they believe a single device can provide up to 64 wavelengths of light for the DWDM interconnect.

Using the SPLASH-2, the second version of the Stanford Parallel Applications for Shared Memory benchmark suite, the HP researchers demonstrated a performance improvement of 2 to 6 times on Corona compared to a similar system outfitted with an electrical interconnect, and those speed increases were achieved using much less power. They also showed significant performance improvements on five of the six HPC Challenge benchmarks: PTRANS (22X), STREAM (19X), GUPS (19X), MPI (19X), FFT (2X). DGEMM, which is not bandwidth limited, showed no improvement.

It’s not all a slam dunk, however. 3D chipmaking and TSV technology is still a work in progress. And integrating photonic hardware using CMOS is in its infancy. But integrated photonics, 3D chip stacking, and the use of low-power cores for computation are all hot technologies now, especially for those in the supercomputing community looking down the road to exascale. The UHPC project (now apparently stuck in Phase 1) that was aimed at developing low-power extreme-scale computing, attracted proposals from Intel, MIT, NVIDIA, and Sandia that incorporated one or more of these technologies.

With Corona though, you get the whole package, so to speak. But all of the work to date appears to be with simulated hardware, and there was no mention in any of the research work of plans to create a working prototype. So whether this is destined to remain a research project at HP or something that gets transformed into a commercial offering remains to be seen.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC-as-a-Service Finds Toehold in Iceland

December 11, 2017

While high-demand workloads (e.g., bitcoin mining) can overheat data center cooling capabilities, at least one data center infrastructure provider has announced an HPC-as-a-service offering that features 100 percent fre Read more…

By Doug Black

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be carefully woven together by people to create the computational c Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit and Sierra. The new AC922 server pairs two Power9 CPUs with f Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

PEZY President Arrested, Charged with Fraud

December 6, 2017

The head of Japanese supercomputing firm PEZY Computing was arrested Tuesday on suspicion of defrauding a government institution of 431 million yen (~$3.8 million). According to reports in the Japanese press, PEZY founde Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

SC17 Cluster Competition: Who Won and Why? Results Analyzed and Over-Analyzed

November 28, 2017

Everyone by now knows that Nanyang Technological University of Singapore (NTU) took home the highest LINPACK Award and the Overall Championship from the recently concluded SC17 Student Cluster Competition. We also already know how the teams did in the Highest LINPACK and Highest HPCG competitions, with Nanyang grabbing bragging rights for both benchmarks. Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

SC Bids Farewell to Denver, Heads to Dallas for 30th Anniversary

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Share This