HP Scientists Envision 10-Teraflop Manycore Chip

By Michael Feldman

March 15, 2012

In high performance computing, Hewlett-Packard is best known for supplying bread-and-butter HPC systems, built with standard processors and interconnects. But the company’s research arm has been devising a manycore chipset, which would outrun the average-sized HPC cluster of today. The design represents a radical leap in performance, and if implemented, would fulfill the promise of exascale computing.

The architecture, known as Corona, first conceived back in 2008, consists of a 256-core CPU, an optical memory module, integrated nanophotonics and 3D chip stacking employing through-silicon-vias (TSVs). At peak output, Corona should deliver 10 teraflops of performance. That’s assuming 16 nm CMOS process technology, which is expected to be on tap by 2017.

The Corona design is aimed squarely at data-intensive types of application, whose speed is limited by the widening gap between CPU performance and available bandwidth to DRAM — the so-called memory wall. Basically any workload whose data does not fit into processor cache is a candidate. This includes not just traditional big data applications, but also a whole bunch of interesting HPC simulations and analytics codes that have to manipulate large or irregular data sets, and are thus memory-constrained.

At the CPU level, Corona contains 256 cores, each supporting up to four threads simultaneously. The Corona cores themselves are nothing exotic. The HP researchers originally assumed low-power Intel x86 Penryn and Silverthorne CPU core architectures for their design simulations, but presumably ARM or other low-power designs could be substituted.

The processor is divided into 16 quad-core “clusters,” with an integrated memory controller on every cluster. The rationale for the hierarchy is to ensure that memory bandwidth grows in concert with the core count and local memory access maintains low latency.

The processor is stacked with the memory controller/L2 cache, the analog electronics and the optical die (which includes on-chip lasers). Everything is hooked together by a 20 TB/sec dense wavelength division multiplexing (DWDM) crossbar, enabling cache coherency between cores, as well as superfast access to that cache.

The memory module, known as optically connected memory (OCM), is a separate chip stack made up of DRAM chips, plus the optical die and interface. It’s connected to the CPU stack at a still rather impressive 10 TB/sec.

To put that into perspective, the current crop of commercial processors have to get by with just a fraction of that bandwidth. The latest 8-core Intel E5-2600 Xeons, for example, can manage about 80 GB/sec of memory bandwidth and the SPARC64 VIIIfx CPU, of K computer fame, supports 64 GB/sec. Even GPUs, which generally support bigger memory pipes (but have to feed hundreds of cores), are bandwidth constrained. NVIDIA fastest Tesla card, the M2090, maxes out at 177 GB/sec.

The main function of Corona’s optical interconnect is to redress the worsening bytes-to-flop ratio that HPC’ers have been lamenting about for over a decade. For memory-constrained applications, it’s preferable to have a byte-to-flop ratio of at least one. Back in the good old days of the late 20th century, computers delivered 8 bytes or more per flop. Now, for current CPUs and GPUs, it’s down to between a half and a quarter of byte per flop.

The primary reasons for the poor ratio are the pin limitations on multicore processors, the inability to extend chip-level communication links across an entire node or computer, and the energy costs of electrical signaling. Photonics ameliorates these problems significantly since light is a much more efficient communication medium than electrons — something long-haul network providers discovered awhile ago.

Energy efficiency, in particular, is a hallmark of photonic communication. The HP researchers calculate that a memory system using an electrical interconnect to drive 10 GB/sec of data to DRAM would take 80 watts. Using nanophotonics and DRAMs optimized to read or write just a cache line at a time, they think they achieve the same bandwidth with just 8 watts.

The trick is to get the optical hardware down onto the silicon. Thanks to recent advances in integrated photonics, the technology is getting close. For example, the Corona design specifies crystalline and silicon dioxide for the wave guides, which are two commonly used materials in CMOS manufacturing. Slightly more exotic is the use of Germanium for the receptors (to absorb the light so that it can be converted back into electrical signals), a less often used, but still CMOS-compatible material. Finally, for the light source, the Corona designers opted for mode-locked lasers, since they believe a single device can provide up to 64 wavelengths of light for the DWDM interconnect.

Using the SPLASH-2, the second version of the Stanford Parallel Applications for Shared Memory benchmark suite, the HP researchers demonstrated a performance improvement of 2 to 6 times on Corona compared to a similar system outfitted with an electrical interconnect, and those speed increases were achieved using much less power. They also showed significant performance improvements on five of the six HPC Challenge benchmarks: PTRANS (22X), STREAM (19X), GUPS (19X), MPI (19X), FFT (2X). DGEMM, which is not bandwidth limited, showed no improvement.

It’s not all a slam dunk, however. 3D chipmaking and TSV technology is still a work in progress. And integrating photonic hardware using CMOS is in its infancy. But integrated photonics, 3D chip stacking, and the use of low-power cores for computation are all hot technologies now, especially for those in the supercomputing community looking down the road to exascale. The UHPC project (now apparently stuck in Phase 1) that was aimed at developing low-power extreme-scale computing, attracted proposals from Intel, MIT, NVIDIA, and Sandia that incorporated one or more of these technologies.

With Corona though, you get the whole package, so to speak. But all of the work to date appears to be with simulated hardware, and there was no mention in any of the research work of plans to create a working prototype. So whether this is destined to remain a research project at HP or something that gets transformed into a commercial offering remains to be seen.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

European HPC Summit Week and PRACEdays 2018: Slaying Dragons and SHAPEing Futures One SME at a Time

June 20, 2018

The University of Ljubljana in Slovenia hosted the third annual EHPCSW18 and fifth annual PRACEdays18 events which opened May 29, 2018. The conference was chaired by PRACE Council Vice-Chair Sergi Girona (Barcelona Super Read more…

By Elizabeth Leake (STEM-Trek for HPCwire)

An Overview of ‘OpenACC for Programmers’ from the Book’s Editors

June 20, 2018

In an era of multicore processors coupled with manycore accelerators in all kinds of devices from smartphones all the way to supercomputers, it is important to train current and future computational scientists of all dom Read more…

By Sunita Chandrasekaran and Guido Juckeland

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose primary use case is to support high IOPS rates to/from a scra Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Preview the World’s Smartest Supercomputer at ISC 2018

Introducing an accelerated IT infrastructure for HPC & AI workloads Read more…

Lenovo to Debut ‘Neptune’ Cooling Technologies at ISC

June 19, 2018

Lenovo today announced a set of cooling technologies, dubbed Neptune, that include direct to node (DTN) warm water cooling, rear door heat exchanger (RDHX), and hybrid solutions that combine air and liquid cooling. Lenov Read more…

By John Russell

European HPC Summit Week and PRACEdays 2018: Slaying Dragons and SHAPEing Futures One SME at a Time

June 20, 2018

The University of Ljubljana in Slovenia hosted the third annual EHPCSW18 and fifth annual PRACEdays18 events which opened May 29, 2018. The conference was chair Read more…

By Elizabeth Leake (STEM-Trek for HPCwire)

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose p Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Exascale USA – Continuing to Move Forward

June 6, 2018

The end of May 2018, saw several important events that continue to advance the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) for the United Read more…

By Alex R. Larzelere

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This