Adaptive Computing Revs Up Moab

By Tiffany Trader

March 20, 2012

Adaptive Computing recently released a new version of Moab 7.0, both the HPC Suite (basic and enterprise editions) and also the Cloud Suite. While the workload management vendor has made important enhancements to its portfolio, what’s even more interesting is how these offerings fit into an increasingly cloud-based IT environment.

adaptation of photo from Flickr user - maveric2003I sat down with Robert Clyde, who took over as CEO of Adaptive Computing in July 2011, and Chad Harrington, Adaptive’s vice president of marketing, to discuss the latest product launch and suss out their cloud strategy. The company, which was founded in 2001 as Cluster Resources, appears to be headed in the right direction. Currently in “a high-growth mode,” they’ve made a big hiring push and have raised over $20 million dollars. The duo explains the impetus for all the forward-movement: so they have everything they need to drive Moab into the future.

Moab refers to Adaptive Computing’s propriety workload management technology, the engine inside all of its offerings. The company has a long history of managing HPC workloads with some impressive stats to its credit. Moab is used by 40% of the top 10 supercomputing systems, nearly 40% of the top 25 and 33% of the top 100 systems based on TOP500 rankings.

Adaptive Computing rearchitected the offerings with a major focus on ease-of-use and the extreme scalability requirements of the coming decade. The CEO note an eye toward not only double-digit petascale systems, but also exascale systems. The software has to keep up, he says.

Adaptive is seeing a lot of its growth in the enterprise HPC market, specifically in the number of manufacturing and oil and gas customers. As the academic market is relatively fixed, going after the bigger enterprise HPC space makes sense from a business perspective, but requires a renewed focus on ease-of-use. Clyde notes that academic users can hire grad students to do the customization, but commercial players expect a higher degree of usability and simplicity. To meet this requirement, Adaptive has added:

§ Simplified job submission & management.
§ New Moab Web Services for easier integration.
§ Updated self-service portal and admin dashboard.
§ Greater usage budgeting and accounting flexibility.
§ Additional database support.

Now we’re talking (cloud)

cloud graphicClyde explains they’ve seen a significant uptick in acceptance of cloud by the HPC community. He points out that at the November 2011 SC event, it seemed like everyone wanted to talk about cloud, whereas previously it was practically a bad word. But this isn’t the cloud as it’s often conceived:

“We’re not talking about cloud like perhaps an enterprise software company is looking at; this a not a heavily-virtualized cloud. What we’re really talking about is cloud bursting, in part, but perhaps even more important is the idea of getting those resources so they’re more fungible, and rapidly re-provisioning and changing them as the needs change within that space from bare metal. This is different from the kind of cloud you’d hear, say, Gartner talking about but equally important.”

TORQUE versus Moab

TORQUE is an open source resource manager that is maintained by Adaptive. It runs on all the nodes; starts the jobs and watches them. Moab, as the scheduler or workload manager, only runs on the head node. While customers need both the resource manager and workload manager, Moab is not tied to TORQUE; customers are free to choose other resource managers, including competing offerings. However, Adaptive is confident that TORQUE is the most scalable resource manager available, and Harrington cites their many top-level system implementations as proof of this claim.

The recently-released TORQUE 4.0 was all about scalability. The company took TORQUE 4.0 and integrated it with Moab 7.0 to obtain a new level of scalability and a new architectural framework that lays the groundwork for future growth. The architectural change takes advantage of distributed communications. The previous version of TORQUE would have to talk to every node to report job status, or get rollup information to start jobs, now there is a communication hierarchy that fans out in a tree exponentially.

Harrington notes that although the sequential process works very well up to thousands of nodes, for tens of thousands of nodes and beyond, the distributed approach is necessary. According to the company, the change was made in response to customer feedback.

Enabling NCSA’s community cloud

Last month, Adaptive announced that it had signed on to help power NCSA’s Private Sector Program, which leases time on their computers in a cloud-like fashion to some of the biggest names in the industry, household names like Boeing, BP, Caterpillar, John Deere, Nokia Siemens Networks, Procter & Gamble and Rolls-Royce.

The NCSA program allows industry partners to tap into the center’s advanced computing resources and expertise to help them innovate and compete. NCSA makes two of their systems available to the PSP industry partners: the iForge system, a 153-teraflop system, which was designed specifically for industrial use, as well as Ember, an Altix UV shared memory system with 1,536 cores and 8 TB RAM.

According to the formal announcement, the “program brings the promise of HPC to a broad segment of the market and enables businesses to tap into all the benefits HPC has to offer as well as having access to a wealth of knowledge within the HPC community.”

But what the announcement doesn’t tell you is that NCSA’s PSP actually delivers its supercomputing resources as a service to its customers, which makes it a community cloud.

As part of its involvement with NCSA’s PSP, Adaptive provides cloud-like capabilities to the PSP customers who are running Moab on their on-site computing resources. The cloud bursting solution works like this. If the company is running Moab on their site and they subscribe to the PSP, Moab will schedule the jobs where it makes the most sense. Since it costs money to use the NCSA machines, Moab will first attempt to schedule jobs locally, but if the job is too big or the system is already being utilized, Moab will schedule part of the job or all of the job to run remotely in NCSA’s community cloud.

Harrington defines the “community cloud” in this case as a set of shared compute resources that are elastic and available over the Internet, but restricted to a closed group of users, unlike a public cloud, which is open to anyone.

Says Harrington: “With Moab running on both sides, in NCSA’s cloud as well as in, say, Boeing or Caterpillar’s side, we can make intelligent scheduling decisions between them, and this allows them to really achieve HPC in the cloud in the sense that they can make smart decisions about whether it should run locally or whether it should run remotely in NCSA’s environment. And it also simplifies workload management when Moab is running on both sides.”

While PSP customers are not mandated to use Moab on their local machines, in that case they will only be able to run jobs locally or run jobs in the cloud, they won’t be able to take advantage of the Moab’s cloud bursting abilities. They can run jobs on runtime, but then they are basically stuck. But if someone like Boeing or Caterpillar were to run Moab on both sides, then Moab can dynamically manage their workloads.

In addition to being excited about this partnership, Harrington and Clyde feel strongly that this type of cloud model makes sense for the HPC market. It’s not a virtualized cloud, but still meets many of the hallmarks of cloud, such as elasticity of resources and scalability. The reason they don’t virtualize in this instance is that it wouldn’t provide any benefit.

Says Harrington: “In the enterprise cloud space, the resources required are much less than the size of the machine so you can actually pack onto a single node and it makes sense but with most HPC jobs, the resources required are bigger than a single machine, so you don’t want to pay that tax for additional overhead.”

What about HPC cloud?

The Adaptive CEO offers up an important distinction between the two offerings. When it comes to running HPC workloads, even in the cloud, their Moab HPC suite will be the go-to product. With an emphasis on flexibility and automation, Moab’s private HPC cloud solution intelligently reprovisions machines depending on the needs of the workload. The Cloud suite, it should be noted, is mainly for running enterprise IT applications in a private or hybrid cloud.

The main differentiator for the enterprise IT side is the amount of virtualization they are likely to have and the concept of many workloads running all the time, i.e., never running to completion. For HPC apps running in the cloud, customers will most likely want to use the enterprise edition (as opposed to the basic edition) for the additional support capabilities that it provides. Since the resources in this case are fungible, that is, always moving around and being used for different things, flexible accounting tools, such as Moab Accounting Manager, are a necessity. “Otherwise there’s almost no hope of keeping track of budgeting,” notes Clyde.

What’s the difference?

Adaptive Computing’s two product lines – Moab HPC Suite and Moab Cloud Suite – both have the same Moab engine, but separate supporting code. As was pointed out previously, Moab Cloud suite is geared toward enterprise IT, and most often used in a private or hybrid cloud setup. The accounting modules and dashboards are essentially the same with some tweaks, but the service catalogue is unique to the cloud product. It allows the IT department to create a catalogue of services, for example a “website service,” which lets the user setup a website by simply selecting the service and setting a few parameters.

The main area where the cloud product diverges from the HPC offering is in the workload manager. The HPC solution relies on the TORQUE manager, which is all about batch job management. In cloud, it’s less about batch jobs and more about the services, which run on an ongoing basis, so the Moab Cloud suite relies on an open source provisioning manager, called EXCAT, which was started by IBM. EXCAT integrates with VMWare, KVM, and with other virtualization managers, and it can also provision bare metal hardware. Despite having different workload managers, Harrington reiterates that the core technical component, Moab, remains the same.

These recent advancements mean Moab Cloud is a complete, end-to-end offering.

“In the past, we had our intelligence engine, but we didn’t have these other pieces,” says Harringon. “We didn’t have provisioning, we didn’t have our own services catalogue, we didn’t have our own built-in database, we didn’t have our own built-in monitoring. Now we have all that. So if you’re an enterprise cloud user, and want to stand up a cloud, we have the full stack.”

HPC roots extend to cloud

Clyde cites the company’s deep HPC background as the reason why the company has been successful meeting the needs of the enterprise community. He makes the point that many of their enterprise cloud customers are surprised at some of the things Moab is capable of, for example, the concept of reservations, scheduling reservations, and scheduling maintenance windows, and being able to suspend and resume workloads.

“As we talk to them, we’ve been able to say, ‘We solved these problems long ago in the HPC space.'” Clyde suggests that other cloud providers think cloud means you just virtualize everything and “nothing could be further from the truth at large enterprise cloud,” says Clyde. While virtualization is important, bare metal is still critical and they’re going to have workloads that do require scheduling and suspend/resume, the CEO tells me.

“You have to have all those ingredients, or you really don’t solve those complex problems,” notes Clyde with some passion. “That’s what I love about the background that HPC has given us. Much like on the large end of HPC that we do a great job at, we’re seeing the same thing in the enterprise cloud space – we’re well-placed to handle the large, complex environments.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information about the upc Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

OpenACC Shows Growing Strength at ISC

June 19, 2017

OpenACC is strutting its stuff at ISC this year touting expanding membership, a jump in downloads, favorable benchmarks across several architectures, new staff members, and new support by key HPC applications providers, Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascal Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

OpenACC Shows Growing Strength at ISC

June 19, 2017

OpenACC is strutting its stuff at ISC this year touting expanding membership, a jump in downloads, favorable benchmarks across several architectures, new staff Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This