Adaptive Computing Revs Up Moab

By Tiffany Trader

March 20, 2012

Adaptive Computing recently released a new version of Moab 7.0, both the HPC Suite (basic and enterprise editions) and also the Cloud Suite. While the workload management vendor has made important enhancements to its portfolio, what’s even more interesting is how these offerings fit into an increasingly cloud-based IT environment.

adaptation of photo from Flickr user - maveric2003I sat down with Robert Clyde, who took over as CEO of Adaptive Computing in July 2011, and Chad Harrington, Adaptive’s vice president of marketing, to discuss the latest product launch and suss out their cloud strategy. The company, which was founded in 2001 as Cluster Resources, appears to be headed in the right direction. Currently in “a high-growth mode,” they’ve made a big hiring push and have raised over $20 million dollars. The duo explains the impetus for all the forward-movement: so they have everything they need to drive Moab into the future.

Moab refers to Adaptive Computing’s propriety workload management technology, the engine inside all of its offerings. The company has a long history of managing HPC workloads with some impressive stats to its credit. Moab is used by 40% of the top 10 supercomputing systems, nearly 40% of the top 25 and 33% of the top 100 systems based on TOP500 rankings.

Adaptive Computing rearchitected the offerings with a major focus on ease-of-use and the extreme scalability requirements of the coming decade. The CEO note an eye toward not only double-digit petascale systems, but also exascale systems. The software has to keep up, he says.

Adaptive is seeing a lot of its growth in the enterprise HPC market, specifically in the number of manufacturing and oil and gas customers. As the academic market is relatively fixed, going after the bigger enterprise HPC space makes sense from a business perspective, but requires a renewed focus on ease-of-use. Clyde notes that academic users can hire grad students to do the customization, but commercial players expect a higher degree of usability and simplicity. To meet this requirement, Adaptive has added:

§ Simplified job submission & management.
§ New Moab Web Services for easier integration.
§ Updated self-service portal and admin dashboard.
§ Greater usage budgeting and accounting flexibility.
§ Additional database support.

Now we’re talking (cloud)

cloud graphicClyde explains they’ve seen a significant uptick in acceptance of cloud by the HPC community. He points out that at the November 2011 SC event, it seemed like everyone wanted to talk about cloud, whereas previously it was practically a bad word. But this isn’t the cloud as it’s often conceived:

“We’re not talking about cloud like perhaps an enterprise software company is looking at; this a not a heavily-virtualized cloud. What we’re really talking about is cloud bursting, in part, but perhaps even more important is the idea of getting those resources so they’re more fungible, and rapidly re-provisioning and changing them as the needs change within that space from bare metal. This is different from the kind of cloud you’d hear, say, Gartner talking about but equally important.”

TORQUE versus Moab

TORQUE is an open source resource manager that is maintained by Adaptive. It runs on all the nodes; starts the jobs and watches them. Moab, as the scheduler or workload manager, only runs on the head node. While customers need both the resource manager and workload manager, Moab is not tied to TORQUE; customers are free to choose other resource managers, including competing offerings. However, Adaptive is confident that TORQUE is the most scalable resource manager available, and Harrington cites their many top-level system implementations as proof of this claim.

The recently-released TORQUE 4.0 was all about scalability. The company took TORQUE 4.0 and integrated it with Moab 7.0 to obtain a new level of scalability and a new architectural framework that lays the groundwork for future growth. The architectural change takes advantage of distributed communications. The previous version of TORQUE would have to talk to every node to report job status, or get rollup information to start jobs, now there is a communication hierarchy that fans out in a tree exponentially.

Harrington notes that although the sequential process works very well up to thousands of nodes, for tens of thousands of nodes and beyond, the distributed approach is necessary. According to the company, the change was made in response to customer feedback.

Enabling NCSA’s community cloud

Last month, Adaptive announced that it had signed on to help power NCSA’s Private Sector Program, which leases time on their computers in a cloud-like fashion to some of the biggest names in the industry, household names like Boeing, BP, Caterpillar, John Deere, Nokia Siemens Networks, Procter & Gamble and Rolls-Royce.

The NCSA program allows industry partners to tap into the center’s advanced computing resources and expertise to help them innovate and compete. NCSA makes two of their systems available to the PSP industry partners: the iForge system, a 153-teraflop system, which was designed specifically for industrial use, as well as Ember, an Altix UV shared memory system with 1,536 cores and 8 TB RAM.

According to the formal announcement, the “program brings the promise of HPC to a broad segment of the market and enables businesses to tap into all the benefits HPC has to offer as well as having access to a wealth of knowledge within the HPC community.”

But what the announcement doesn’t tell you is that NCSA’s PSP actually delivers its supercomputing resources as a service to its customers, which makes it a community cloud.

As part of its involvement with NCSA’s PSP, Adaptive provides cloud-like capabilities to the PSP customers who are running Moab on their on-site computing resources. The cloud bursting solution works like this. If the company is running Moab on their site and they subscribe to the PSP, Moab will schedule the jobs where it makes the most sense. Since it costs money to use the NCSA machines, Moab will first attempt to schedule jobs locally, but if the job is too big or the system is already being utilized, Moab will schedule part of the job or all of the job to run remotely in NCSA’s community cloud.

Harrington defines the “community cloud” in this case as a set of shared compute resources that are elastic and available over the Internet, but restricted to a closed group of users, unlike a public cloud, which is open to anyone.

Says Harrington: “With Moab running on both sides, in NCSA’s cloud as well as in, say, Boeing or Caterpillar’s side, we can make intelligent scheduling decisions between them, and this allows them to really achieve HPC in the cloud in the sense that they can make smart decisions about whether it should run locally or whether it should run remotely in NCSA’s environment. And it also simplifies workload management when Moab is running on both sides.”

While PSP customers are not mandated to use Moab on their local machines, in that case they will only be able to run jobs locally or run jobs in the cloud, they won’t be able to take advantage of the Moab’s cloud bursting abilities. They can run jobs on runtime, but then they are basically stuck. But if someone like Boeing or Caterpillar were to run Moab on both sides, then Moab can dynamically manage their workloads.

In addition to being excited about this partnership, Harrington and Clyde feel strongly that this type of cloud model makes sense for the HPC market. It’s not a virtualized cloud, but still meets many of the hallmarks of cloud, such as elasticity of resources and scalability. The reason they don’t virtualize in this instance is that it wouldn’t provide any benefit.

Says Harrington: “In the enterprise cloud space, the resources required are much less than the size of the machine so you can actually pack onto a single node and it makes sense but with most HPC jobs, the resources required are bigger than a single machine, so you don’t want to pay that tax for additional overhead.”

What about HPC cloud?

The Adaptive CEO offers up an important distinction between the two offerings. When it comes to running HPC workloads, even in the cloud, their Moab HPC suite will be the go-to product. With an emphasis on flexibility and automation, Moab’s private HPC cloud solution intelligently reprovisions machines depending on the needs of the workload. The Cloud suite, it should be noted, is mainly for running enterprise IT applications in a private or hybrid cloud.

The main differentiator for the enterprise IT side is the amount of virtualization they are likely to have and the concept of many workloads running all the time, i.e., never running to completion. For HPC apps running in the cloud, customers will most likely want to use the enterprise edition (as opposed to the basic edition) for the additional support capabilities that it provides. Since the resources in this case are fungible, that is, always moving around and being used for different things, flexible accounting tools, such as Moab Accounting Manager, are a necessity. “Otherwise there’s almost no hope of keeping track of budgeting,” notes Clyde.

What’s the difference?

Adaptive Computing’s two product lines – Moab HPC Suite and Moab Cloud Suite – both have the same Moab engine, but separate supporting code. As was pointed out previously, Moab Cloud suite is geared toward enterprise IT, and most often used in a private or hybrid cloud setup. The accounting modules and dashboards are essentially the same with some tweaks, but the service catalogue is unique to the cloud product. It allows the IT department to create a catalogue of services, for example a “website service,” which lets the user setup a website by simply selecting the service and setting a few parameters.

The main area where the cloud product diverges from the HPC offering is in the workload manager. The HPC solution relies on the TORQUE manager, which is all about batch job management. In cloud, it’s less about batch jobs and more about the services, which run on an ongoing basis, so the Moab Cloud suite relies on an open source provisioning manager, called EXCAT, which was started by IBM. EXCAT integrates with VMWare, KVM, and with other virtualization managers, and it can also provision bare metal hardware. Despite having different workload managers, Harrington reiterates that the core technical component, Moab, remains the same.

These recent advancements mean Moab Cloud is a complete, end-to-end offering.

“In the past, we had our intelligence engine, but we didn’t have these other pieces,” says Harringon. “We didn’t have provisioning, we didn’t have our own services catalogue, we didn’t have our own built-in database, we didn’t have our own built-in monitoring. Now we have all that. So if you’re an enterprise cloud user, and want to stand up a cloud, we have the full stack.”

HPC roots extend to cloud

Clyde cites the company’s deep HPC background as the reason why the company has been successful meeting the needs of the enterprise community. He makes the point that many of their enterprise cloud customers are surprised at some of the things Moab is capable of, for example, the concept of reservations, scheduling reservations, and scheduling maintenance windows, and being able to suspend and resume workloads.

“As we talk to them, we’ve been able to say, ‘We solved these problems long ago in the HPC space.'” Clyde suggests that other cloud providers think cloud means you just virtualize everything and “nothing could be further from the truth at large enterprise cloud,” says Clyde. While virtualization is important, bare metal is still critical and they’re going to have workloads that do require scheduling and suspend/resume, the CEO tells me.

“You have to have all those ingredients, or you really don’t solve those complex problems,” notes Clyde with some passion. “That’s what I love about the background that HPC has given us. Much like on the large end of HPC that we do a great job at, we’re seeing the same thing in the enterprise cloud space – we’re well-placed to handle the large, complex environments.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ lar Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HP Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This