NVIDIA Launches First Kepler GPUs at Gamers; HPC Version Waiting in the Wings

By Michael Feldman

March 22, 2012

NVIDIA debuted its much-talked-about Kepler GPU this week, promising much better performance and energy efficiency than its previous generation Fermi-based products. The first offerings are mid-range graphics cards targeted at the heart of the desktop and notebook market, but the more powerful second-generation Kepler GPU for high performance computing is already in the pipeline.

The two new products introduced this week, the GeForce GTX 680 for desktop systems and the GeForce 600M GPUs for notebooks, are twice as energy efficient as their Fermi-based counterparts, according to NVIDIA. And although they represent more powerful graphics processors than the previous generation, the overriding design theme of the new architecture is performance per watt, rather than performance per square millimeter. According to Sumit Gupta, NVIDIA’s senior director of the Tesla GPU Computing business unit, that’s a fundamental change in the company’s architectural strategy. “This is the first time that power is a higher order concern than area,” he says.

That’s because, like nearly every chipmaker on the planet, NVIDIA’s fastest growing market segment is the mobile and notebook/ultrabook space. This architectural emphasis on energy efficiency also dovetails rather nicely with the GPU computing market, where power consumption is also a huge factor. That’s especially true for the Tesla GPU parts that end up in energy-sucking HPC servers. “Every market we’re in has become power sensitive,” says Gupta.

Upping the power efficiency in Kepler relied heavily on a tried-and-true technique, namely increasing the core count while lowering the clock speed. But the architecture is somewhat different. Underneath the covers, the cores are collected into what NVIDIA calls their Streaming Multiprocessors (SMs). In the Fermi version there were only 32 cores per SM. In the Kepler implementation, they reduced the control logic disproportionally and were able to squeeze in 192.

Boosting the core numbers was a no-brainer, given they were moving from the 40nm process technology with Fermi, to the 28nm node for Kepler. In the case of the GeForce GTX 680, for example, there are 1536 cores — three times as many as in the high-end Fermi GPUs, which topped out at 512 cores. At the same time they reduced the clock frequency from 1.5 GHz on the Fermi chip to just a shade over 1 GHz. Although each core is now doing less work, because there are more of them, throughput increases and does so with lower energy consumption.

CPU chipmakers have employed this strategy as well. But because of the greater complexity of the individual CPU cores and their reliance on limited memory bandwidth, core count increases are starting to stagnate (no CPU make ever tripled core count in one generation). Also, since a lot of applications are dependent on single-threaded performance, CPU chip makers try to hold the line on clock speed as much as possible. Ratcheting down the clock speed by a third, as NVIDIA has done here, is unheard for a CPU product.

For Kepler, NVIDIA is claiming a doubling of performance per watt compared to the Fermi-generation GeForce GTX 580. For real gaming applications, the new Kepler products are getting between 1.1 to and 2 times better the performance per watt. In some cases though, it can do even better.

For example, NVIDIA used their Samaritan demo, which illustrates photorealistic gaming, to show a 3X performance boost. Up until this week, that demo required three GeForce GTX 580 cards, drawing a total of 732 watts. It can now be run with a single 195-watt GeForce GTX 680.

To support all the extra throughput, memory bandwidth has been kicked up significantly. The interface on the GTX 680 supports 6.0 Gbps, which is 50 percent more than the 4.0 Gbps available on the GTX 580. According to Gupta, that’s the highest memory bandwidth for any commodity-based chip, NVIDIA or otherwise.

All of these architectural changes — more cores, slower clocks, and more memory bandwidth — will carry over into the second version of the Kepler GPU, a higher-end design which will be aimed primarily at GPU computing applications. This is the one the next-generation Tesla products will be based upon, and the one that will initially end up in two of the most powerful supercomputers in the world: Blue Waters at NCSA and Titan at ORNL.

According to Gupta, the second Kepler implementation will include a lot of capability not present in these first gaming-oriented products. In particular, it will have a lot more double-precision capability (which is not required for most graphics applications) and include new compute-specific features. And of course the raw power of these chips will be quite a bit higher than the mid-range graphics version introduced this week.

Although the company is not yet giving any of the speeds and feeds on the second Kepler, one would expect the core count and peak double precision performance to be two to three times higher, and memory bandwidth to get at least a 50 percent bump. Clock speed will almost certainly be whittled down from the current 1.3 GHz on the Tesla M2090, but perhaps not so aggressively as in these first Kepler gaming parts.

Presumably, the NVIDIA will stick with its 225 watt power envelope for the Tesla lineup, so the engineers just have to balance the core count and clock to land on that thermal design point. Given that power ceiling and the core count increase, NVIDIA should be able to deliver a Tesla GPU with between 1.3 and 1.5 teraflops of double precision performance. On the other hand, there is probably a case to be made to also offer less performant parts that consume less power.

In any case we’ll know soon enough. NVIDIA will probably do their paper launch of the HPC Kepler at the company’s GPU Technology Conference in May. And according to Gupta, the company is on track to put this version into production in Q4. If that goes according to plan, the new Kepler GPUs will be up and running on supercomputers before the end of the year.

Related Articles

NVIDIA Revs Up Tesla GPU

GPUs Will Morph ORNL’s Jaguar Into 20-Petaflop Titan

NCSA Signs Up Cray for Blue Waters Redo

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This