HPC: Still Looking for Love from Manufacturers

By Michael Feldman

March 28, 2012

One of the prominent themes of this week’s High Performance Computer and Communications Council (HPCC) Conference revolved around the question of why  many users with a need for HPC are still resistant to adopting the technology. John West, the Director of the DoD’s High Performance Computing Modernization Program, and the organizer of this years HPCC program, talked at length about this particular phenomenon in his conference kickoff presentation on Monday morning, titled “What’s Missing From HPC?”

There are plenty of drivers for bringing more users into the HPC fold, from the practical motivations of hardware and software vendors, who would like to move more product, to the more altruistic interests of the HPC’ers, who want to expand the community, and the government, who sees the technology as a way to improve industry competitiveness and create jobs.

The problem has been coined with the term “Missing Middle,” referring to the absence of HPC users between the topmost supercomputing practitioners at the national labs and those doing technical computing via MATLAB and CAE/CAD tools on personal computers and workstations. Many of these missing users are in the manufacturing sector, but they also inhabit more established HPC enclaves such as defense, life sciences and finance.

All things being equal, one would expect there to be a continuum of HPC practitioners from the bottom to the top, with a pyramidal distribution that reflected application level and complexity. But that’s not the case. While there are millions of people doing technical computing on the desktop and perhaps tens of thousands of supercomputing users at the top, the middle ground has a lot more in common with supercomputing group population-wise.

For these types of users, system size is in the “closet cluster” realm, on up to maybe a few racks of servers. In fact, this represents the average size of HPC systems for people who are not doing “big science”-type supercomputing. In that sense, the middle is not so much missing, as grossly underpopulated.

According to West, most people using supercomputing today came to the technology because they didn’t have of choice. Astrophysicists couldn’t create two galaxies in a lab and watch them collide; they had to simulate the whole thing digitally. Since supercomputing practitioners are more or less a captive audience, in many cases the tools that are available are not all that great. They often rely on specialized compilers and development environments, legacy programming languages, command line interfaces, and obscure Linux commands. Meanwhile, the larger computing community has moved on to pretty GUIs and a rich ecosystem of more intuitive tools.

That by itself has made the jump from desktop computing to clusters a painful one. But as West mentioned later, there are a number of new interfaces being developed (usually specialized for individual applications or application domains) that are much more user friendly.

Another barrier to moving up the computing food chain is expensive hardware and software. “We’re mostly over this one,” West noted. “It’s not so expensive anymore, although if you’re talking about small manufacturers or small businesses, $50,000 is still real money.”

Then there’s the management of the cluster. If you don’t have an IT admin in your organization or if you do have one, but they are used to managing only Windows PCs, then the decision to add an HPC system is a lot more difficult. The choices (ignoring the cloud option) are to either hire a cluster administration or convince IT that they have to come up to speed on the technology.

Compounding that problem is the lack of a complete tool chain — the various codes, libraries and development tools that are needed to create the models and other user applications. Since these are often missing even at the high-end of HPC, their absence for entry-level users should come as no particular surprise. The solution here, said West, is non-trivial, and comes down to filling in those software gaps on a case-by-case basis.

One barrier that is not discussed as much is the lack of expertise and social support for HPC systems. For a workplace with no previous experience using the technology, the initial user is often the loneliest guy or gal in the building, with no one to ask questions of when something goes wrong. “This is a skills problem, at its heart,” West said, adding that what is needed is a lot more people in industry who are at least computational literate and then a smaller number of computational professionals.

Related to the cultural and technical unfamiliarity with high performance computing is the fact that most non-HPC users already have something that works today. It might not be the fastest or slickest solution, but it serves its purpose. A typical desktop workflow might mean starting up a job on a PC before going home for the evening, and then getting the results back the following morning. If that doesn’t sound like an optimal workflow, at least it’s comfortable one.

The opportunity for HPC arises when the pace of desktop computation isn’t fast enough, either because it’s limiting product innovation, it’s causing deadlines to be missed, or both. It’s been estimated that maybe half the 280,000 or so US manufacturers fall into that category. And given that only 4 to 8 percent of those manufacturers currently employ HPC, the opportunity does indeed appear to loom large.

Of course, the underlying assumption here is that Moore’s Law is not sufficient for technical computing at any level. In other words, desktop systems that are regularly replaced with ones based on faster chips would not be powerful enough to keep up with an escalating demand for better application fidelity or more complex computations. While it’s true that desktop machines of today have as much computational power as the top supercomputers of 15 years ago, that’s still too slow for traditional supercomputing applications. To escape the more limited progression of Moore’s Law, HPC has turned to multiplying those processors across ever-larger clusters. But is Moore’s Law too slow for a typical CAE/CAD user?

Since the cluster is the lens through which HPC practitioners look at computing problems, it’s no surprise they believe the technology is appropriate for most, if not all, technical computing problems. In his conference presentation, West acknowledged that mindset, pointing out that people in this community tend to view HPC as a “unalloyed good,” which can be applied to good effect nearly everywhere. “I think that’s not always helpful,” admitted West.

Intersect360 Research CEO Addison Snell, who has been following the HPC-manufacturing gap for the past couple of years, remarked that not every company is going to need the technology. According to him, the easiest converts will be those manufacturers who need to create innovative products, rather than just standard widgets that fit into a supply chain.

At the conference this week, their were three examples of such companies that made a successful leap to HPC: Simpson Strong Tie, which employs high fidelity FEA models for its structural engineering designs; Accio Energy, a wind energy start-up that is using HPC to design electrohydrodynamic (EHD) wind energy technology (no moving parts); and Intelligent Light, a software company that used its CFD software to help design a game-changing bicycle racing wheel for manufacturer Zipp Speed Weaponry. In all cases, these fit into the high-innovation-need category, where the engineering, by necessity, required a lot of design iterations.

Intel’s Bill Feiereisen got the last word at the conference with his HPC in Manufacturing presentation on Wednesday afternoon. He brought up the idea of creating a pilot project that offers a template for entry-level users interested in make the jump to HPC. He also saw outreach and education as ways of getting the HPC message out and creating a critical mass of qualified practitioners.

Ultimately though, Feiereisen believes that high performance computing has to become accessible enough to be a “pull” rather than a “push” technology. Obviously, there’s no magic bullet for that, but at least there seems to be pretty solid consensus in the community now that they need to find some new ways to connect the technology dots.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This