HPC: Still Looking for Love from Manufacturers

By Michael Feldman

March 28, 2012

One of the prominent themes of this week’s High Performance Computer and Communications Council (HPCC) Conference revolved around the question of why  many users with a need for HPC are still resistant to adopting the technology. John West, the Director of the DoD’s High Performance Computing Modernization Program, and the organizer of this years HPCC program, talked at length about this particular phenomenon in his conference kickoff presentation on Monday morning, titled “What’s Missing From HPC?”

There are plenty of drivers for bringing more users into the HPC fold, from the practical motivations of hardware and software vendors, who would like to move more product, to the more altruistic interests of the HPC’ers, who want to expand the community, and the government, who sees the technology as a way to improve industry competitiveness and create jobs.

The problem has been coined with the term “Missing Middle,” referring to the absence of HPC users between the topmost supercomputing practitioners at the national labs and those doing technical computing via MATLAB and CAE/CAD tools on personal computers and workstations. Many of these missing users are in the manufacturing sector, but they also inhabit more established HPC enclaves such as defense, life sciences and finance.

All things being equal, one would expect there to be a continuum of HPC practitioners from the bottom to the top, with a pyramidal distribution that reflected application level and complexity. But that’s not the case. While there are millions of people doing technical computing on the desktop and perhaps tens of thousands of supercomputing users at the top, the middle ground has a lot more in common with supercomputing group population-wise.

For these types of users, system size is in the “closet cluster” realm, on up to maybe a few racks of servers. In fact, this represents the average size of HPC systems for people who are not doing “big science”-type supercomputing. In that sense, the middle is not so much missing, as grossly underpopulated.

According to West, most people using supercomputing today came to the technology because they didn’t have of choice. Astrophysicists couldn’t create two galaxies in a lab and watch them collide; they had to simulate the whole thing digitally. Since supercomputing practitioners are more or less a captive audience, in many cases the tools that are available are not all that great. They often rely on specialized compilers and development environments, legacy programming languages, command line interfaces, and obscure Linux commands. Meanwhile, the larger computing community has moved on to pretty GUIs and a rich ecosystem of more intuitive tools.

That by itself has made the jump from desktop computing to clusters a painful one. But as West mentioned later, there are a number of new interfaces being developed (usually specialized for individual applications or application domains) that are much more user friendly.

Another barrier to moving up the computing food chain is expensive hardware and software. “We’re mostly over this one,” West noted. “It’s not so expensive anymore, although if you’re talking about small manufacturers or small businesses, $50,000 is still real money.”

Then there’s the management of the cluster. If you don’t have an IT admin in your organization or if you do have one, but they are used to managing only Windows PCs, then the decision to add an HPC system is a lot more difficult. The choices (ignoring the cloud option) are to either hire a cluster administration or convince IT that they have to come up to speed on the technology.

Compounding that problem is the lack of a complete tool chain — the various codes, libraries and development tools that are needed to create the models and other user applications. Since these are often missing even at the high-end of HPC, their absence for entry-level users should come as no particular surprise. The solution here, said West, is non-trivial, and comes down to filling in those software gaps on a case-by-case basis.

One barrier that is not discussed as much is the lack of expertise and social support for HPC systems. For a workplace with no previous experience using the technology, the initial user is often the loneliest guy or gal in the building, with no one to ask questions of when something goes wrong. “This is a skills problem, at its heart,” West said, adding that what is needed is a lot more people in industry who are at least computational literate and then a smaller number of computational professionals.

Related to the cultural and technical unfamiliarity with high performance computing is the fact that most non-HPC users already have something that works today. It might not be the fastest or slickest solution, but it serves its purpose. A typical desktop workflow might mean starting up a job on a PC before going home for the evening, and then getting the results back the following morning. If that doesn’t sound like an optimal workflow, at least it’s comfortable one.

The opportunity for HPC arises when the pace of desktop computation isn’t fast enough, either because it’s limiting product innovation, it’s causing deadlines to be missed, or both. It’s been estimated that maybe half the 280,000 or so US manufacturers fall into that category. And given that only 4 to 8 percent of those manufacturers currently employ HPC, the opportunity does indeed appear to loom large.

Of course, the underlying assumption here is that Moore’s Law is not sufficient for technical computing at any level. In other words, desktop systems that are regularly replaced with ones based on faster chips would not be powerful enough to keep up with an escalating demand for better application fidelity or more complex computations. While it’s true that desktop machines of today have as much computational power as the top supercomputers of 15 years ago, that’s still too slow for traditional supercomputing applications. To escape the more limited progression of Moore’s Law, HPC has turned to multiplying those processors across ever-larger clusters. But is Moore’s Law too slow for a typical CAE/CAD user?

Since the cluster is the lens through which HPC practitioners look at computing problems, it’s no surprise they believe the technology is appropriate for most, if not all, technical computing problems. In his conference presentation, West acknowledged that mindset, pointing out that people in this community tend to view HPC as a “unalloyed good,” which can be applied to good effect nearly everywhere. “I think that’s not always helpful,” admitted West.

Intersect360 Research CEO Addison Snell, who has been following the HPC-manufacturing gap for the past couple of years, remarked that not every company is going to need the technology. According to him, the easiest converts will be those manufacturers who need to create innovative products, rather than just standard widgets that fit into a supply chain.

At the conference this week, their were three examples of such companies that made a successful leap to HPC: Simpson Strong Tie, which employs high fidelity FEA models for its structural engineering designs; Accio Energy, a wind energy start-up that is using HPC to design electrohydrodynamic (EHD) wind energy technology (no moving parts); and Intelligent Light, a software company that used its CFD software to help design a game-changing bicycle racing wheel for manufacturer Zipp Speed Weaponry. In all cases, these fit into the high-innovation-need category, where the engineering, by necessity, required a lot of design iterations.

Intel’s Bill Feiereisen got the last word at the conference with his HPC in Manufacturing presentation on Wednesday afternoon. He brought up the idea of creating a pilot project that offers a template for entry-level users interested in make the jump to HPC. He also saw outreach and education as ways of getting the HPC message out and creating a critical mass of qualified practitioners.

Ultimately though, Feiereisen believes that high performance computing has to become accessible enough to be a “pull” rather than a “push” technology. Obviously, there’s no magic bullet for that, but at least there seems to be pretty solid consensus in the community now that they need to find some new ways to connect the technology dots.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

2017 Gordon Bell Prize Finalists Named

October 23, 2017

The three finalists for this year’s Gordon Bell Prize in High Performance Computing have been announced. They include two papers on projects run on China’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This