HPC: Still Looking for Love from Manufacturers

By Michael Feldman

March 28, 2012

One of the prominent themes of this week’s High Performance Computer and Communications Council (HPCC) Conference revolved around the question of why  many users with a need for HPC are still resistant to adopting the technology. John West, the Director of the DoD’s High Performance Computing Modernization Program, and the organizer of this years HPCC program, talked at length about this particular phenomenon in his conference kickoff presentation on Monday morning, titled “What’s Missing From HPC?”

There are plenty of drivers for bringing more users into the HPC fold, from the practical motivations of hardware and software vendors, who would like to move more product, to the more altruistic interests of the HPC’ers, who want to expand the community, and the government, who sees the technology as a way to improve industry competitiveness and create jobs.

The problem has been coined with the term “Missing Middle,” referring to the absence of HPC users between the topmost supercomputing practitioners at the national labs and those doing technical computing via MATLAB and CAE/CAD tools on personal computers and workstations. Many of these missing users are in the manufacturing sector, but they also inhabit more established HPC enclaves such as defense, life sciences and finance.

All things being equal, one would expect there to be a continuum of HPC practitioners from the bottom to the top, with a pyramidal distribution that reflected application level and complexity. But that’s not the case. While there are millions of people doing technical computing on the desktop and perhaps tens of thousands of supercomputing users at the top, the middle ground has a lot more in common with supercomputing group population-wise.

For these types of users, system size is in the “closet cluster” realm, on up to maybe a few racks of servers. In fact, this represents the average size of HPC systems for people who are not doing “big science”-type supercomputing. In that sense, the middle is not so much missing, as grossly underpopulated.

According to West, most people using supercomputing today came to the technology because they didn’t have of choice. Astrophysicists couldn’t create two galaxies in a lab and watch them collide; they had to simulate the whole thing digitally. Since supercomputing practitioners are more or less a captive audience, in many cases the tools that are available are not all that great. They often rely on specialized compilers and development environments, legacy programming languages, command line interfaces, and obscure Linux commands. Meanwhile, the larger computing community has moved on to pretty GUIs and a rich ecosystem of more intuitive tools.

That by itself has made the jump from desktop computing to clusters a painful one. But as West mentioned later, there are a number of new interfaces being developed (usually specialized for individual applications or application domains) that are much more user friendly.

Another barrier to moving up the computing food chain is expensive hardware and software. “We’re mostly over this one,” West noted. “It’s not so expensive anymore, although if you’re talking about small manufacturers or small businesses, $50,000 is still real money.”

Then there’s the management of the cluster. If you don’t have an IT admin in your organization or if you do have one, but they are used to managing only Windows PCs, then the decision to add an HPC system is a lot more difficult. The choices (ignoring the cloud option) are to either hire a cluster administration or convince IT that they have to come up to speed on the technology.

Compounding that problem is the lack of a complete tool chain — the various codes, libraries and development tools that are needed to create the models and other user applications. Since these are often missing even at the high-end of HPC, their absence for entry-level users should come as no particular surprise. The solution here, said West, is non-trivial, and comes down to filling in those software gaps on a case-by-case basis.

One barrier that is not discussed as much is the lack of expertise and social support for HPC systems. For a workplace with no previous experience using the technology, the initial user is often the loneliest guy or gal in the building, with no one to ask questions of when something goes wrong. “This is a skills problem, at its heart,” West said, adding that what is needed is a lot more people in industry who are at least computational literate and then a smaller number of computational professionals.

Related to the cultural and technical unfamiliarity with high performance computing is the fact that most non-HPC users already have something that works today. It might not be the fastest or slickest solution, but it serves its purpose. A typical desktop workflow might mean starting up a job on a PC before going home for the evening, and then getting the results back the following morning. If that doesn’t sound like an optimal workflow, at least it’s comfortable one.

The opportunity for HPC arises when the pace of desktop computation isn’t fast enough, either because it’s limiting product innovation, it’s causing deadlines to be missed, or both. It’s been estimated that maybe half the 280,000 or so US manufacturers fall into that category. And given that only 4 to 8 percent of those manufacturers currently employ HPC, the opportunity does indeed appear to loom large.

Of course, the underlying assumption here is that Moore’s Law is not sufficient for technical computing at any level. In other words, desktop systems that are regularly replaced with ones based on faster chips would not be powerful enough to keep up with an escalating demand for better application fidelity or more complex computations. While it’s true that desktop machines of today have as much computational power as the top supercomputers of 15 years ago, that’s still too slow for traditional supercomputing applications. To escape the more limited progression of Moore’s Law, HPC has turned to multiplying those processors across ever-larger clusters. But is Moore’s Law too slow for a typical CAE/CAD user?

Since the cluster is the lens through which HPC practitioners look at computing problems, it’s no surprise they believe the technology is appropriate for most, if not all, technical computing problems. In his conference presentation, West acknowledged that mindset, pointing out that people in this community tend to view HPC as a “unalloyed good,” which can be applied to good effect nearly everywhere. “I think that’s not always helpful,” admitted West.

Intersect360 Research CEO Addison Snell, who has been following the HPC-manufacturing gap for the past couple of years, remarked that not every company is going to need the technology. According to him, the easiest converts will be those manufacturers who need to create innovative products, rather than just standard widgets that fit into a supply chain.

At the conference this week, their were three examples of such companies that made a successful leap to HPC: Simpson Strong Tie, which employs high fidelity FEA models for its structural engineering designs; Accio Energy, a wind energy start-up that is using HPC to design electrohydrodynamic (EHD) wind energy technology (no moving parts); and Intelligent Light, a software company that used its CFD software to help design a game-changing bicycle racing wheel for manufacturer Zipp Speed Weaponry. In all cases, these fit into the high-innovation-need category, where the engineering, by necessity, required a lot of design iterations.

Intel’s Bill Feiereisen got the last word at the conference with his HPC in Manufacturing presentation on Wednesday afternoon. He brought up the idea of creating a pilot project that offers a template for entry-level users interested in make the jump to HPC. He also saw outreach and education as ways of getting the HPC message out and creating a critical mass of qualified practitioners.

Ultimately though, Feiereisen believes that high performance computing has to become accessible enough to be a “pull” rather than a “push” technology. Obviously, there’s no magic bullet for that, but at least there seems to be pretty solid consensus in the community now that they need to find some new ways to connect the technology dots.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information about the upc Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

OpenACC Shows Growing Strength at ISC

June 19, 2017

OpenACC is strutting its stuff at ISC this year touting expanding membership, a jump in downloads, favorable benchmarks across several architectures, new staff members, and new support by key HPC applications providers, Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascal Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

OpenACC Shows Growing Strength at ISC

June 19, 2017

OpenACC is strutting its stuff at ISC this year touting expanding membership, a jump in downloads, favorable benchmarks across several architectures, new staff Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This