Accelerating bioinformatics with hybrid-core computing

By Nicole Hemsoth

April 2, 2012

Advances in sequencing technology have significantly increased data generation and require commensurate computational advances for bioinformatics analysis. Advanced architectures based on reconfigurable computing can reduce application run times from hours to minutes and address problem sizes unattainable with commodity servers. The increased capability also fundamentally improves research quality by allowing more accurate, previously impractical approaches. The use of a hybrid-core computing architecture can be used to solve data-intensive problems of next-generation sequencing analysis like de novo assembly and reference mapping of short-read sequences.

Two important steps in next-generation sequencing analysis are de novo assembly and reference mapping of short-read sequences. Both of these lend themselves to high levels of acceleration with the FPGA-based coprocessor on the Convey systems. Convey’s bioinformatics applications Graph Constructor and BWA can be used in conjunction with, or replace, workflows using standard Velvet[1] and BWA[2], respectively. Graph Constructor reduces not only run time for Velvet, but also reduces memory requirements, making it capable of larger assemblies. Additional performance and workflow optimization includes a fast kmer counting tool that allows quick identification of optimal kmer length and coverage cutoffs for de novo assembly.

Convey’s Hybrid Core Architecture: Fast Compute, Faster Memory

The Convey Hybrid-Core (HC) architecture pairs Intel® x86 microprocessors with a coprocessor comprised of reconfigurable hardware (FPGAs) (Figure 1). Algorithms are implemented as instructions, called personalities, which are loaded onto the FPGAs at runtime to accelerate the applications that use them. Complementing the high performance of the reconfigurable compute elements, Convey’s hybrid-core system also has a highly parallel memory subsystem that is optimized for random accesses. Hybrid-Core Globally Shared Memory (HCGSM) provides a single coherent view of memory to the cache based x86 cores and the high throughput word optimized processing elements on the coprocessor. Bioinformatics applications that experience memory performance limitations on cache-based x86 servers greatly benefit from Convey’s memory architecture.

 The Convey Hybrid-Core Architecture

Figure 1. The Convey Hybrid-Core Architecture. The architecture pairs an Intel x86 host system tightly integrated with a reconfigurable FPGA based coprocessor. Hybrid-Core Globally Shared Memory (HCGSM) provides a single coherent view of memory to the x86 cores and the coprocessor’s highly parallel memory subsystem.

Burrows-Wheeler and de Bruijn Graph Personalities

de Bruijn graph-based assemblers such as Velvet consist of large numbers of relatively simple operations on large randomly accessed data structures. Conventional architectures lack sufficient parallelism in the core processing elements and the memory subsystem to efficiently execute these algorithms. The Convey Graph Constructor implements a high speed de Bruijn graph generator that can reduce the runtime and memory footprint for graph-based genome assembly. It can be run by itself or in conjunction with the Velvet application.

Other algorithms also benefit from massively parallel implementations of application-appropriate-data-type operations, which use logic gates more efficiently than commodity servers. In Burrows-Wheeler mapping applications, significant gains are made in the population bit count required to traverse the compressed reference suffix trees in memory. Convey has developed a personality that improves the performance of the aln step of the BWA processing pipeline, and a version of the open-source BWA application with thread parallelized single- and paired-end processing. The BWA personality has 64 alignment units which each operate on 32 sequences simultaneously, for a total of 2,048 simultaneous alignment operations.

Align and Paired End Performance for Human Genome

For these tests (Figure 1) we aligned paired-end sequence data from the 1000 Genomes project to a human reference (human_g1k_v37), consisting of 84 sequences and a total of 3.1 billion bases. SRR189815_1 and SRR189815_2 are paired-end Illumina reads from individual HG00124 containing a total of 242 million reads, average length 101. The aln steps were run using Convey accelerated BWA on HC-1 and HC-1ex systems, and the paired end step was run on a commodity x86 system using a parallelized version of bwa sampe. The results are compared to BWA 0.5.9 running on the commodity server.

 Align and Paired End Performance for Human Genome

Figure 1. Align and Paired End Performance for Human Genome. The addition of an HC-1ex and the Convey accelerated BWA pipeline to a commodity x86 system delivers 14.7x the throughput of the x86 system alone, processing 120 K reads/sec.

Results

  • Convey’s hardware accelerated aln is 7.5x (HC-1) and 9x (HC-1ex) over a 12-core x86.
  • Thread parallel sampe is 7.3x faster than the standard bwa implementation on the same hardware.
  • The addition of an HC-1ex and the Convey accelerated BWA pipeline to a commodity x86 system delivers 14.7x the throughput of the x86 system alone, processing 120 K reads/sec.

de novo Assembly Parameter Optimization

A feature of the Convey Bioinformatics Suite is the Kmer Counter. The Convey Kmer Counter generates a histogram of kmer coverage counts by hashing kmers in each read sequence. As shown in Figure 2, analysis of the read data aids in selecting optimal kmer length and coverage cutoff values for de novo assembly.

 Histogram of kmer coverage for the Assemblathon data set, as produced by Convey’s Kmer Counter for kmer length 21.

Figure 2. Histogram of kmer coverage for the Assemblathon data set, as produced by Convey’s Kmer Counter for kmer length 21. Statistics for assembly results using the selected coverage cutoffs show the impact of parameter selection on assembly quality, as compared with Velvet’s default setting. Convey’s Kmer Counter can analyze multiple kmer lengths in the same run as shown in the blue overlay.

Results:

  • Higher quality assemblies by using optimal parameters
  • Reduced run time and memory by avoiding poor kmers
  • Extremely efficient compared with VelvetOptimiser
  • Handles longer kmer lengths than Jellyfish
  • Analyzes multiple kmer lengths in a single job

Summary

Convey has developed a personality that improves the performance of the aln step of the BWA processing pipeline, and a parallelized version of the samse and sampe processing steps, that allow Convey systems to dramatically reduce time to solution and increase throughput 15x for a full BWA paired-end pipeline, processing 120 K reads/sec.

We have developed a GraphConstructor personality that interfaces to Velvet and Oases that reduces memory requirements by about 75% and accelerates throughput by an order of magnitude, making it possible to tackle previously impractical genomes with higher quality results. In addition to this work, there are several other projects recently submitted or in progress comparing the performance and accuracy of Convey’s Graph Constructor for genome and transcriptome assemblies, comparing with a range of popular assembly programs.

We are working on additional performance and workflow optimization for these applications, as well as accelerating additional applications.

References and Acknowledgements

  1. “Velvet: Algorithms for de novo Short Read Assembly Using de Bruijn Graphs”, Daniel R. Zerbino and Ewan Birney, EMBL-European Bioinformatics Institute, Genome Res. 18 (2008) 821.
  2. “Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform”, Heng Li and Richard Durban, Wellcome Trust Sanger Institute, Bioinformatics 25 (2009) 1754.
  3. “Metagenomic discovery of biomass-degrading genes and genomes from cow rumen”, Hess ,et al, Science 331 (2011) 463.
  4. “Efficient Graph Based Assembly of Short-Read Sequences on a Hybrid Core Architecture“ Alex Sczyrba, Abhishek Pratap, Shane Canon, James Han, Alex Copeland, Zhong Wang, DOE Joint Genome Institute User Meeting, March 2011.

For more information go to Convey Computer.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitive computing, memory-centric computing, high-speed communicat Read more…

By John Russell

US Seeks to Automate Video Analysis

January 16, 2018

U.S. military and intelligence agencies continue to look for new ways to use artificial intelligence to sift through huge amounts of video imagery in hopes of freeing analysts to identify threats and otherwise put their Read more…

By George Leopold

URISC@SC17 and the #LongestLastMile

January 11, 2018

A multinational delegation recently attended the Understanding Risk in Shared CyberEcosystems workshop, or URISC@SC17, in Denver, Colorado. URISC participants and presenters from 11 countries, including eight African nations, 12 U.S. states, Canada, India and Nepal, also attended SC17, the annual international conference for high performance computing, networking, storage and analysis that drew nearly 13,000 attendees. Read more…

By Elizabeth Leake, STEM-Trek Nonprofit

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitiv Read more…

By John Russell

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

The @hpcnotes Predictions for HPC in 2018

January 4, 2018

I’m not averse to making predictions about the world of High Performance Computing (and Supercomputing, Cloud, etc.) in person at conferences, meetings, causa Read more…

By Andrew Jones

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

  • arrow
  • Click Here for More Headlines
  • arrow
Share This