Accelerating bioinformatics with hybrid-core computing

By Nicole Hemsoth

April 2, 2012

Advances in sequencing technology have significantly increased data generation and require commensurate computational advances for bioinformatics analysis. Advanced architectures based on reconfigurable computing can reduce application run times from hours to minutes and address problem sizes unattainable with commodity servers. The increased capability also fundamentally improves research quality by allowing more accurate, previously impractical approaches. The use of a hybrid-core computing architecture can be used to solve data-intensive problems of next-generation sequencing analysis like de novo assembly and reference mapping of short-read sequences.

Two important steps in next-generation sequencing analysis are de novo assembly and reference mapping of short-read sequences. Both of these lend themselves to high levels of acceleration with the FPGA-based coprocessor on the Convey systems. Convey’s bioinformatics applications Graph Constructor and BWA can be used in conjunction with, or replace, workflows using standard Velvet[1] and BWA[2], respectively. Graph Constructor reduces not only run time for Velvet, but also reduces memory requirements, making it capable of larger assemblies. Additional performance and workflow optimization includes a fast kmer counting tool that allows quick identification of optimal kmer length and coverage cutoffs for de novo assembly.

Convey’s Hybrid Core Architecture: Fast Compute, Faster Memory

The Convey Hybrid-Core (HC) architecture pairs Intel® x86 microprocessors with a coprocessor comprised of reconfigurable hardware (FPGAs) (Figure 1). Algorithms are implemented as instructions, called personalities, which are loaded onto the FPGAs at runtime to accelerate the applications that use them. Complementing the high performance of the reconfigurable compute elements, Convey’s hybrid-core system also has a highly parallel memory subsystem that is optimized for random accesses. Hybrid-Core Globally Shared Memory (HCGSM) provides a single coherent view of memory to the cache based x86 cores and the high throughput word optimized processing elements on the coprocessor. Bioinformatics applications that experience memory performance limitations on cache-based x86 servers greatly benefit from Convey’s memory architecture.

 The Convey Hybrid-Core Architecture

Figure 1. The Convey Hybrid-Core Architecture. The architecture pairs an Intel x86 host system tightly integrated with a reconfigurable FPGA based coprocessor. Hybrid-Core Globally Shared Memory (HCGSM) provides a single coherent view of memory to the x86 cores and the coprocessor’s highly parallel memory subsystem.

Burrows-Wheeler and de Bruijn Graph Personalities

de Bruijn graph-based assemblers such as Velvet consist of large numbers of relatively simple operations on large randomly accessed data structures. Conventional architectures lack sufficient parallelism in the core processing elements and the memory subsystem to efficiently execute these algorithms. The Convey Graph Constructor implements a high speed de Bruijn graph generator that can reduce the runtime and memory footprint for graph-based genome assembly. It can be run by itself or in conjunction with the Velvet application.

Other algorithms also benefit from massively parallel implementations of application-appropriate-data-type operations, which use logic gates more efficiently than commodity servers. In Burrows-Wheeler mapping applications, significant gains are made in the population bit count required to traverse the compressed reference suffix trees in memory. Convey has developed a personality that improves the performance of the aln step of the BWA processing pipeline, and a version of the open-source BWA application with thread parallelized single- and paired-end processing. The BWA personality has 64 alignment units which each operate on 32 sequences simultaneously, for a total of 2,048 simultaneous alignment operations.

Align and Paired End Performance for Human Genome

For these tests (Figure 1) we aligned paired-end sequence data from the 1000 Genomes project to a human reference (human_g1k_v37), consisting of 84 sequences and a total of 3.1 billion bases. SRR189815_1 and SRR189815_2 are paired-end Illumina reads from individual HG00124 containing a total of 242 million reads, average length 101. The aln steps were run using Convey accelerated BWA on HC-1 and HC-1ex systems, and the paired end step was run on a commodity x86 system using a parallelized version of bwa sampe. The results are compared to BWA 0.5.9 running on the commodity server.

 Align and Paired End Performance for Human Genome

Figure 1. Align and Paired End Performance for Human Genome. The addition of an HC-1ex and the Convey accelerated BWA pipeline to a commodity x86 system delivers 14.7x the throughput of the x86 system alone, processing 120 K reads/sec.

Results

  • Convey’s hardware accelerated aln is 7.5x (HC-1) and 9x (HC-1ex) over a 12-core x86.
  • Thread parallel sampe is 7.3x faster than the standard bwa implementation on the same hardware.
  • The addition of an HC-1ex and the Convey accelerated BWA pipeline to a commodity x86 system delivers 14.7x the throughput of the x86 system alone, processing 120 K reads/sec.

de novo Assembly Parameter Optimization

A feature of the Convey Bioinformatics Suite is the Kmer Counter. The Convey Kmer Counter generates a histogram of kmer coverage counts by hashing kmers in each read sequence. As shown in Figure 2, analysis of the read data aids in selecting optimal kmer length and coverage cutoff values for de novo assembly.

 Histogram of kmer coverage for the Assemblathon data set, as produced by Convey’s Kmer Counter for kmer length 21.

Figure 2. Histogram of kmer coverage for the Assemblathon data set, as produced by Convey’s Kmer Counter for kmer length 21. Statistics for assembly results using the selected coverage cutoffs show the impact of parameter selection on assembly quality, as compared with Velvet’s default setting. Convey’s Kmer Counter can analyze multiple kmer lengths in the same run as shown in the blue overlay.

Results:

  • Higher quality assemblies by using optimal parameters
  • Reduced run time and memory by avoiding poor kmers
  • Extremely efficient compared with VelvetOptimiser
  • Handles longer kmer lengths than Jellyfish
  • Analyzes multiple kmer lengths in a single job

Summary

Convey has developed a personality that improves the performance of the aln step of the BWA processing pipeline, and a parallelized version of the samse and sampe processing steps, that allow Convey systems to dramatically reduce time to solution and increase throughput 15x for a full BWA paired-end pipeline, processing 120 K reads/sec.

We have developed a GraphConstructor personality that interfaces to Velvet and Oases that reduces memory requirements by about 75% and accelerates throughput by an order of magnitude, making it possible to tackle previously impractical genomes with higher quality results. In addition to this work, there are several other projects recently submitted or in progress comparing the performance and accuracy of Convey’s Graph Constructor for genome and transcriptome assemblies, comparing with a range of popular assembly programs.

We are working on additional performance and workflow optimization for these applications, as well as accelerating additional applications.

References and Acknowledgements

  1. “Velvet: Algorithms for de novo Short Read Assembly Using de Bruijn Graphs”, Daniel R. Zerbino and Ewan Birney, EMBL-European Bioinformatics Institute, Genome Res. 18 (2008) 821.
  2. “Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform”, Heng Li and Richard Durban, Wellcome Trust Sanger Institute, Bioinformatics 25 (2009) 1754.
  3. “Metagenomic discovery of biomass-degrading genes and genomes from cow rumen”, Hess ,et al, Science 331 (2011) 463.
  4. “Efficient Graph Based Assembly of Short-Read Sequences on a Hybrid Core Architecture“ Alex Sczyrba, Abhishek Pratap, Shane Canon, James Han, Alex Copeland, Zhong Wang, DOE Joint Genome Institute User Meeting, March 2011.

For more information go to Convey Computer.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a community infrastructure in support of machine learning research Read more…

By John Russell

DARPA Continues Investment in Post-Moore’s Technologies

July 24, 2017

The U.S. military long ago ceded dominance in electronics innovation to Silicon Valley, the DoD-backed powerhouse that has driven microelectronic generation for decades. With Moore's Law clearly running out of steam, the Read more…

By George Leopold

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a comm Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This