NVIDIA Pokes Holes in Intel’s Manycore Story

By Michael Feldman

April 3, 2012

As NVIDIA’s upcoming Kepler-grade Tesla GPU prepares to do battle with Intel’s Knight Corner, the companies are busy formulating their respective HPC accelerator stories. While NVIDIA has enjoyed the advantage of actually having products in the field to talk about, Intel has managed to capture the attention of some fence-sitters with assurances of high programmability, simple recompiles, and transparent scalability for its Many Integrated Core (MIC) coprocessors. But according to NVIDIA’s Steve Scott, such promises ignore certain hard truths about how accelerator-based computing really works.

Over the past couple of years, Intel has been telling would-be MIC users that its upcoming Knights Corner coprocessor will deliver the performance of a GPU without the challenges of a having to adopt a new programming model — CUDA OpenCL, or whatever. And since the MIC architecture is x86-based (essentially simple Pentium cores glued to extra wide vector units), developing Knights Corner applications will not be that different than programming a multicore Xeon CPU.

Leveraging that commonality, Intel says their compiler will be able generate MIC executables from legacy HPC source code. And it will do so for applications based on both MPI and OpenMP, the two most popular parallel programming frameworks used in high performance computing. Essentially Intel is promising a free port to MIC.

Not so fast, says Scott, the former Cray alum who joined NVIDIA last year its chief technology officer of the Tesla business. According to him, porting applications for MIC, or even developing new ones, won’t be any easier than programming GPUs, or for that matter, any accelerator. In a blog posted on Tuesday, he described the problems with Intel’s manycore narrative and its claims of superiority over GPU computing.

Scott is not arguing against the MIC as an accelerator, per se. He and most of the community are convinced that HPC needs a hybrid (or heterogeneous) computing to move performance forward without consuming unreasonable amounts of energy. Traditional CPUs, whose cores are optimized for single-threaded performance, are not designed for work requiring lots of throughput. For that type of computing, much better energy efficiency can be delivered using simpler, slower, but more numerous cores. Both GPUs and the MIC adhere to this paradigm; they just come at the problem from different architectural pedigrees.

The problem is that running throughput code on a serial processor sucks up too much energy, which is the situation many users are facing today with conventional CPUs. Conversely, running serial code on a throughput processor is just too slow, and defeats the purpose of having an accelerator in the first place.

Even if low single-threaded performance wasn’t an issue, today’s accelerators live on PCIe cards with limited amounts of memory (usually just a handful a gigabytes) that exists at the end of a PCIe bus. So if the entire application were to run on the accelerator, all its data and instructions would have to be shuttled in from main memory in chunks. Consider that today, with only a portion of the application living on the GPU, the PCIe bottleneck can still hinder performance. Stuffing the whole program on the accelerator would make it that much worse.

So the main thrust of Scott’s critique is that for hybrid computing to work, you have to split the application intelligently between the CPU host and the accelerator. That’s true, he says, whether you’re talking about an x86-based accelerator like MIC or a graphic-based one like Tesla. “The entire game now is how do we deliver performance as power efficiently as possible,” he told HPCwire.

Intel has revealed very little about application performance on the future MIC parts, and has not really addressed how that application split is going to work programmatically, or even that it’s necessary. To date, they and some of the early MIC adopters have mostly talked about recompiling existing codes, based on OpenMP and/or MPI, and running the resulting executable natively on MIC.

Running MPI codes on a manycore architecture is particularly problematic. First there’s the memory capacity problem mentioned above (each MPI process uses quite a bit of data). And then there’s the fact that once the number of MPI processes exceeds the accelerator core count — 50-plus for Knights Corner — the application would have to use the server node’s network card to communicate with MPI processes running on other nodes. As Scott points out in his blog, that’s far too many MPI processes for a typical network interface; all the contention would overwhelm the available bandwidth.

OpenMP has the opposite problem, since most programs using this model don’t scale beyond more than 4 to 8 tasks. As a result, there would no way for most OpenMP applications to utilize the 50-plus cores expected on Knights Corner-equipped nodes. And once again, there’s the memory capacity problem. Like MPI, OpenMP expects to live in the relatively spacious accommodations of the CPU’s main memory.

Scott says if you’re just going to use a compiler to transform your existing application to run on the MIC, you’re not doing hybrid computing at all. More importantly, running the entire code on the accelerator does not take performance into account. After all, the idea is to speed up the application, not just recompile it so that it functionally works. “We don’t think it’s legitimate to talk about ease of programming without talking about performance,” he says.

Scott argues that for applications to take advantage of these new throughput processors, programmers will have delve into some sort of hybrid programming model that splits off the parallel throughput code from the serial code. For NVIDIA GPUs, the parallelism can be exposed with CUDA or with the emerging set of OpenMP-like directives for accelerators, known as OpenACC. There is already an initial CUDA port for x86 developed by PGI, so that’s one option. But the OpenACC framework is likely to reach a larger audience of developers since it offers a higher level of abstraction than CUDA and it looks like it will eventually be folded into the industry-standard OpenMP API.

The idea is that programmers can use OpenACC today to develop GPU-accelerated applications with the anticipation they will be able to use the same code for other accelerator-based hardware platforms, like MIC and AMD’s Fusion or discrete GPU processors. Intel and AMD have not jumped on the OpenACC bandwagon as of yet, but were it to be adopted as a standard and demanded by their customers, they would certainly have to support it.

Even OpenACC is not a magic bullet though. The programmer still has to do dive into the source code  and tell the compiler where and how to carve out parallel code for the accelerator. And as Scott admits, that can be a significant effort, especially for large legacy HPC applications that were written for homogeneous CPU-only machines.

But, he maintains, if you’re interested in taking advantage of the performance offered by throughput processor like GPUs and MIC, the work has to be done. Processor clocks are not likely get any faster than they are today. So the only way to increase performance is via parallelism. As Scott says, “Computers aren’t getting faster, they’re only getting wider.”

Related Articles

The Heterogeneous Programming Jungle

NVIDIA Eyes Post-CUDA Era of GPU Computing

Intel Touts Manycore Coprocessor at Supercomputing Conference

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This