NVIDIA Pokes Holes in Intel’s Manycore Story

By Michael Feldman

April 3, 2012

As NVIDIA’s upcoming Kepler-grade Tesla GPU prepares to do battle with Intel’s Knight Corner, the companies are busy formulating their respective HPC accelerator stories. While NVIDIA has enjoyed the advantage of actually having products in the field to talk about, Intel has managed to capture the attention of some fence-sitters with assurances of high programmability, simple recompiles, and transparent scalability for its Many Integrated Core (MIC) coprocessors. But according to NVIDIA’s Steve Scott, such promises ignore certain hard truths about how accelerator-based computing really works.

Over the past couple of years, Intel has been telling would-be MIC users that its upcoming Knights Corner coprocessor will deliver the performance of a GPU without the challenges of a having to adopt a new programming model — CUDA OpenCL, or whatever. And since the MIC architecture is x86-based (essentially simple Pentium cores glued to extra wide vector units), developing Knights Corner applications will not be that different than programming a multicore Xeon CPU.

Leveraging that commonality, Intel says their compiler will be able generate MIC executables from legacy HPC source code. And it will do so for applications based on both MPI and OpenMP, the two most popular parallel programming frameworks used in high performance computing. Essentially Intel is promising a free port to MIC.

Not so fast, says Scott, the former Cray alum who joined NVIDIA last year its chief technology officer of the Tesla business. According to him, porting applications for MIC, or even developing new ones, won’t be any easier than programming GPUs, or for that matter, any accelerator. In a blog posted on Tuesday, he described the problems with Intel’s manycore narrative and its claims of superiority over GPU computing.

Scott is not arguing against the MIC as an accelerator, per se. He and most of the community are convinced that HPC needs a hybrid (or heterogeneous) computing to move performance forward without consuming unreasonable amounts of energy. Traditional CPUs, whose cores are optimized for single-threaded performance, are not designed for work requiring lots of throughput. For that type of computing, much better energy efficiency can be delivered using simpler, slower, but more numerous cores. Both GPUs and the MIC adhere to this paradigm; they just come at the problem from different architectural pedigrees.

The problem is that running throughput code on a serial processor sucks up too much energy, which is the situation many users are facing today with conventional CPUs. Conversely, running serial code on a throughput processor is just too slow, and defeats the purpose of having an accelerator in the first place.

Even if low single-threaded performance wasn’t an issue, today’s accelerators live on PCIe cards with limited amounts of memory (usually just a handful a gigabytes) that exists at the end of a PCIe bus. So if the entire application were to run on the accelerator, all its data and instructions would have to be shuttled in from main memory in chunks. Consider that today, with only a portion of the application living on the GPU, the PCIe bottleneck can still hinder performance. Stuffing the whole program on the accelerator would make it that much worse.

So the main thrust of Scott’s critique is that for hybrid computing to work, you have to split the application intelligently between the CPU host and the accelerator. That’s true, he says, whether you’re talking about an x86-based accelerator like MIC or a graphic-based one like Tesla. “The entire game now is how do we deliver performance as power efficiently as possible,” he told HPCwire.

Intel has revealed very little about application performance on the future MIC parts, and has not really addressed how that application split is going to work programmatically, or even that it’s necessary. To date, they and some of the early MIC adopters have mostly talked about recompiling existing codes, based on OpenMP and/or MPI, and running the resulting executable natively on MIC.

Running MPI codes on a manycore architecture is particularly problematic. First there’s the memory capacity problem mentioned above (each MPI process uses quite a bit of data). And then there’s the fact that once the number of MPI processes exceeds the accelerator core count — 50-plus for Knights Corner — the application would have to use the server node’s network card to communicate with MPI processes running on other nodes. As Scott points out in his blog, that’s far too many MPI processes for a typical network interface; all the contention would overwhelm the available bandwidth.

OpenMP has the opposite problem, since most programs using this model don’t scale beyond more than 4 to 8 tasks. As a result, there would no way for most OpenMP applications to utilize the 50-plus cores expected on Knights Corner-equipped nodes. And once again, there’s the memory capacity problem. Like MPI, OpenMP expects to live in the relatively spacious accommodations of the CPU’s main memory.

Scott says if you’re just going to use a compiler to transform your existing application to run on the MIC, you’re not doing hybrid computing at all. More importantly, running the entire code on the accelerator does not take performance into account. After all, the idea is to speed up the application, not just recompile it so that it functionally works. “We don’t think it’s legitimate to talk about ease of programming without talking about performance,” he says.

Scott argues that for applications to take advantage of these new throughput processors, programmers will have delve into some sort of hybrid programming model that splits off the parallel throughput code from the serial code. For NVIDIA GPUs, the parallelism can be exposed with CUDA or with the emerging set of OpenMP-like directives for accelerators, known as OpenACC. There is already an initial CUDA port for x86 developed by PGI, so that’s one option. But the OpenACC framework is likely to reach a larger audience of developers since it offers a higher level of abstraction than CUDA and it looks like it will eventually be folded into the industry-standard OpenMP API.

The idea is that programmers can use OpenACC today to develop GPU-accelerated applications with the anticipation they will be able to use the same code for other accelerator-based hardware platforms, like MIC and AMD’s Fusion or discrete GPU processors. Intel and AMD have not jumped on the OpenACC bandwagon as of yet, but were it to be adopted as a standard and demanded by their customers, they would certainly have to support it.

Even OpenACC is not a magic bullet though. The programmer still has to do dive into the source code  and tell the compiler where and how to carve out parallel code for the accelerator. And as Scott admits, that can be a significant effort, especially for large legacy HPC applications that were written for homogeneous CPU-only machines.

But, he maintains, if you’re interested in taking advantage of the performance offered by throughput processor like GPUs and MIC, the work has to be done. Processor clocks are not likely get any faster than they are today. So the only way to increase performance is via parallelism. As Scott says, “Computers aren’t getting faster, they’re only getting wider.”

Related Articles

The Heterogeneous Programming Jungle

NVIDIA Eyes Post-CUDA Era of GPU Computing

Intel Touts Manycore Coprocessor at Supercomputing Conference

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate scientists the ability to use machine learning to identify e Read more…

By Rob Farber

Mellanox Reacts to Activist Investor Pressures in Letter to Shareholders

March 16, 2018

Activist investor Starboard Value has been exerting pressure on Mellanox Technologies to increase its returns. In response, the high-performance networking company on Monday, March 12, published a letter to shareholders outlining its proposal for a May 2018 extraordinary general meeting (EGM) of shareholders and highlighting its long-term growth strategy and focus on operating margin improvement. Read more…

By Staff

Quantum Computing vs. Our ‘Caveman Newtonian Brain’: Why Quantum Is So Hard

March 15, 2018

Quantum is coming. Maybe not today, maybe not tomorrow, but soon enough. Within 10 to 12 years, we’re told, special-purpose quantum systems will enter the commercial realm. Assuming this happens, we can also assume that quantum will, over extended time, become increasingly general purpose as it delivers mind-blowing power. Read more…

By Doug Black

HPE Extreme Performance Solutions

Achieve Optimal Performance at Scale with High Performance Fabrics for HPC

High Performance Computing (HPC) is unlocking a new era of speed and productivity to fuel business transformation. Rapid advancements in HPC capabilities are helping organizations operate faster and more effectively than ever, but in today’s fast-paced marketplace, a new generation of technologies is required to reach greater scalability and cost-efficiency. Read more…

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise IT in its willingness to outsource computational power. The m Read more…

By Chris Downing

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Stephen Hawking, Legendary Scientist, Dies at 76

March 14, 2018

Stephen Hawking passed away at his home in Cambridge, England, in the early morning of March 14; he was 76. Born on January 8, 1942, Hawking was an English theo Read more…

By Tiffany Trader

Hyperion Tackles Elusive Quantum Computing Landscape

March 13, 2018

Quantum computing - exciting and off-putting all at once - is a kaleidoscope of technology and market questions whose shapes and positions are far from settled. Read more…

By John Russell

Part Two: Navigating Life Sciences Choppy HPC Waters in 2018

March 8, 2018

2017 was not necessarily the best year to build a large HPC system for life sciences say Ari Berman, VP and GM of consulting services, and Aaron Gardner, direct Read more…

By John Russell

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

SciNet Launches Niagara, Canada’s Fastest Supercomputer

March 5, 2018

SciNet and the University of Toronto today unveiled "Niagara," Canada's most-powerful supercomputer, comprising 1,500 dense Lenovo ThinkSystem SD530 high-perfor Read more…

By Tiffany Trader

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

World Record: Quantum Computer with 46 Qubits Simulated

December 18, 2017

Scientists from the Jülich Supercomputing Centre have set a new world record. Together with researchers from Wuhan University and the University of Groningen, Read more…

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This