What Mainstream Supercomputing Might Mean for the World

By Gareth Spence

April 3, 2012

The age of “mainstream supercomputing” has been forecast for some years. There has even arisen something of a debate as to whether such a concept is even possible – does “supercomputing,” by definition, cease being “super” the moment it becomes “mainstream?”

digital keyholeWhether mainstream supercomputing is here or ever literally can be, however, it is indisputable that more and more powerful capabilities are becoming available to more and more diverse users. The power of today’s typical workstations exceeds that which constituted supercomputing not very long ago.

The question now is, where all of this processing power – increasingly “democratized” – might eventually take the world? There are clues today of what mind-blowing benefits this rapidly evolving technology might yield tomorrow.

Better Products Faster – and Beyond

Supercomputing already undergirds some of the world’s most powerful state-of-the-art applications.

Computational fluid dynamics (CFD) is a prime example. In CFD, the flow and interaction of liquids and gases can be simulated and analyzed, enabling predictions and planning in a host of activities, such as developing better drug-delivery systems, assisting manufacturers in achieving compliance with environmental regulations and improving building comfort, safety and energy efficiency.

Supercomputing has also enabled more rapid and accurate finite element analysis (FEA), which players in the aerospace, automotive and other industries use in defining design parameters, prototyping products and analyzing the impact of different stresses on a design before manufacturing begins. As in CFD, the benefits include slashed product-development cycles and costs and more reliable products – in short, better products faster.

Weather forecasting and algorithmic trading are other applications that today rely heavily on supercomputing. Indeed, supercomputing is emerging as a differentiating factor in global competition across industries.

More Power to More People

As supercomputing’s enabling technologies – datacenter interconnection via fiber-optic networks and protocol-agnostic, low-latency Dense Wavelength Division Multiplexing (DWDM) techniques, processors, storage, memory, etc. – have grown ever more powerful, access to the capability has grown steadily more democratized. The introduction of tools such as Compute Unified Device Architecture (CUDA) and Open Computing Language (OpenCL) have simplified the processes of creating programs to run across the heterogeneous gamut of compute cores. And there have emerged offers of high-performance computing (HPC) as a service.

Amazon Web Services (AWS), for example, has garnered significant attention with the rollout of an HPC offering that allows customers to select from a menu of elastic resources and pricing models. “Customers can choose from Cluster Compute or Cluster GPU instances within a full-bisection high bandwidth network for tightly-coupled and IO-intensive workloads or scale out across thousands of cores for throughput-oriented applications,” the company says. “Today, AWS customers run a variety of HPC applications on these instances including Computer Aided Engineering, molecular modeling, genome analysis, and numerical modeling across many industries including Biopharma, Oil and Gas, Financial Services and Manufacturing. In addition, academic researchers are leveraging Amazon EC2 Cluster instances to perform research in physics, chemistry, biology, computer science, and materials science.”

These technological and business developments within supercomputing have met with a gathering external enthusiasm to harness “Big Data.” More organizations of more types are seeking to process and base decision-making on more data from more sources than ever before.

The result of the convergence of these trends is that supercomputing – once strictly the domain of the world’s largest government agencies, research-and-education institutions, pharmaceutical companies and the few other giant enterprises with the resources to build (and power) clusters at tremendous cost – is gaining an increasingly mainstream base of users.

The Political Push

Political leaders in nations around the world see in supercomputing an opportunity to better protect their citizens and/or to enhance or at least maintain their economies’ standing in the global marketplace.

India, for example, is investing in a plan to indigenously develop by 2017 a supercomputer that it believes will be the fastest in the world – one delivering a performance of 132 quintillion operations per second. Today’s speed leader, per the November 2011 TOP500 List of the world’s fastest supercomputers, is a Japanese model that checks in at a mere 10 quadrillion calculations per second. India’s goals for its investments are said to include enhancing its space-exploration program, monsoon forecasting and agricultural outputs.

Similar news has come out of the European Union. The European Commission’s motivation for doubling its HPC ante was reported to strengthen its presence on the TOP500 List and to protect and create jobs in the EU. Part of the plan is to encourage supercomputing usage among small and medium-sized enterprises (SMEs), especially.

SMEs are the focus of a pilot U.S. program, too.

For SMEs who are looking to advance their use of existing MS&A (modeling, simulation and analysis), access to HPC platforms is critical in order to increase the accuracy of their calculations (toward predictive capability), and decrease the time to solution so the design and production cycle can be reduced, thus improving productivity and time to market,” reads the overview for the National Digital Engineering and Manufacturing Consortium (NDEMC).

The motivation here is not simply to level the playing the field for smaller businesses that are struggling to compete with larger ones. Big OEMs, in fact, help identify the SMEs who might be candidates for participating in the NDEMC effort launched with funding from the U.S. Department of Commerce, state governments and private companies. One of the goals is to extend the product-development efficiencies and -quality enhancements that HPC has already brought to the big OEMs to the smaller partners throughout their manufacturing supply chains.

Reasons the NDEMC: “The network of OEMS, SMEs, solution providers, and collaborators that make up the NDEMC will result in accelerated innovation through the use of advanced technology, and an ecosystem of like-minded companies. The goal is greater productivity and profits for all players through an increase of manufacturing jobs remaining in and coming back to the U.S. (i.e. onshoring/reshoring) and increases in U.S. exports.”

Frontiers of Innovation

Where might this democratization of supercomputing’s benefits take the world? How might the extension of this type of processing power to mass audiences ultimately impact our society and shared future? Some of today’s most provocative applications offer a peak into the revolutionary potential of supercomputing.

For example, Harvard Medical School’s Laboratory of Personalized Medicine is leveraging Amazon’s Elastic Compute Cloud service in developing “whole genome analysis testing models in record time,” according to an Amazon Web Services case study. By creating and provisioning scalable computing capacity in the cloud within minutes, the Harvard Medical School lab is able to more quickly execute its work in helping craft revolutionary preventive healthcare strategies that are tailored to individuals’ genetic characteristics.

Other organizations are leveraging Amazon’s high-performance computing services for optimizing wind-power installations, processing high-resolution satellite images and enabling innovations in the methods of reporting and consuming news.

Similarly, an association of R&E institutions in Italy’s Trieste territory, “LightNet,” has launched a network that allows its users to dynamically configure state-of-the-art services. Leveraging a carrier-class, 40Gbit/s DWDM solution for high-speed connectivity and dynamic bandwidth allocation, LightNet supports multi-site computation and data mining – as well as operation of virtual laboratories and digital libraries, high-definition broadcasts of surgical operations, remote control of microscopes, etc. – across a topology of interconnected, redundant fiber rings spanning 320 kilometers.

Already we are seeing proof that supercomputing enables new questions to be both asked and answered. That trend will only intensify as more of the world’s most creative and keenest thinkers are availed to the breakthrough capability.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian and American Scientists Achieve 50% Increase in Data Transmission Speed

September 20, 2018

As high-performance computing becomes increasingly data-intensive and the demand for shorter turnaround times grows, data transfer speed becomes an ever more important bottleneck. Now, in an article published in IEEE Tra Read more…

By Oliver Peckham

IBM to Brand Rescale’s HPC-in-Cloud Platform

September 20, 2018

HPC (or big compute)-in-the-cloud platform provider Rescale has formalized the work it’s been doing in partnership with public cloud vendors by announcing its Powered by Rescale program – with IBM as its first named Read more…

By Doug Black

Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements i Read more…

By Wolfgang Gentzsch

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Clouds Over the Ocean – a Healthcare Perspective

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Read more…

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Gordon Bell Prize used Summit in their work. That’s impres Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This