What Mainstream Supercomputing Might Mean for the World

By Gareth Spence

April 3, 2012

The age of “mainstream supercomputing” has been forecast for some years. There has even arisen something of a debate as to whether such a concept is even possible – does “supercomputing,” by definition, cease being “super” the moment it becomes “mainstream?”

digital keyholeWhether mainstream supercomputing is here or ever literally can be, however, it is indisputable that more and more powerful capabilities are becoming available to more and more diverse users. The power of today’s typical workstations exceeds that which constituted supercomputing not very long ago.

The question now is, where all of this processing power – increasingly “democratized” – might eventually take the world? There are clues today of what mind-blowing benefits this rapidly evolving technology might yield tomorrow.

Better Products Faster – and Beyond

Supercomputing already undergirds some of the world’s most powerful state-of-the-art applications.

Computational fluid dynamics (CFD) is a prime example. In CFD, the flow and interaction of liquids and gases can be simulated and analyzed, enabling predictions and planning in a host of activities, such as developing better drug-delivery systems, assisting manufacturers in achieving compliance with environmental regulations and improving building comfort, safety and energy efficiency.

Supercomputing has also enabled more rapid and accurate finite element analysis (FEA), which players in the aerospace, automotive and other industries use in defining design parameters, prototyping products and analyzing the impact of different stresses on a design before manufacturing begins. As in CFD, the benefits include slashed product-development cycles and costs and more reliable products – in short, better products faster.

Weather forecasting and algorithmic trading are other applications that today rely heavily on supercomputing. Indeed, supercomputing is emerging as a differentiating factor in global competition across industries.

More Power to More People

As supercomputing’s enabling technologies – datacenter interconnection via fiber-optic networks and protocol-agnostic, low-latency Dense Wavelength Division Multiplexing (DWDM) techniques, processors, storage, memory, etc. – have grown ever more powerful, access to the capability has grown steadily more democratized. The introduction of tools such as Compute Unified Device Architecture (CUDA) and Open Computing Language (OpenCL) have simplified the processes of creating programs to run across the heterogeneous gamut of compute cores. And there have emerged offers of high-performance computing (HPC) as a service.

Amazon Web Services (AWS), for example, has garnered significant attention with the rollout of an HPC offering that allows customers to select from a menu of elastic resources and pricing models. “Customers can choose from Cluster Compute or Cluster GPU instances within a full-bisection high bandwidth network for tightly-coupled and IO-intensive workloads or scale out across thousands of cores for throughput-oriented applications,” the company says. “Today, AWS customers run a variety of HPC applications on these instances including Computer Aided Engineering, molecular modeling, genome analysis, and numerical modeling across many industries including Biopharma, Oil and Gas, Financial Services and Manufacturing. In addition, academic researchers are leveraging Amazon EC2 Cluster instances to perform research in physics, chemistry, biology, computer science, and materials science.”

These technological and business developments within supercomputing have met with a gathering external enthusiasm to harness “Big Data.” More organizations of more types are seeking to process and base decision-making on more data from more sources than ever before.

The result of the convergence of these trends is that supercomputing – once strictly the domain of the world’s largest government agencies, research-and-education institutions, pharmaceutical companies and the few other giant enterprises with the resources to build (and power) clusters at tremendous cost – is gaining an increasingly mainstream base of users.

The Political Push

Political leaders in nations around the world see in supercomputing an opportunity to better protect their citizens and/or to enhance or at least maintain their economies’ standing in the global marketplace.

India, for example, is investing in a plan to indigenously develop by 2017 a supercomputer that it believes will be the fastest in the world – one delivering a performance of 132 quintillion operations per second. Today’s speed leader, per the November 2011 TOP500 List of the world’s fastest supercomputers, is a Japanese model that checks in at a mere 10 quadrillion calculations per second. India’s goals for its investments are said to include enhancing its space-exploration program, monsoon forecasting and agricultural outputs.

Similar news has come out of the European Union. The European Commission’s motivation for doubling its HPC ante was reported to strengthen its presence on the TOP500 List and to protect and create jobs in the EU. Part of the plan is to encourage supercomputing usage among small and medium-sized enterprises (SMEs), especially.

SMEs are the focus of a pilot U.S. program, too.

For SMEs who are looking to advance their use of existing MS&A (modeling, simulation and analysis), access to HPC platforms is critical in order to increase the accuracy of their calculations (toward predictive capability), and decrease the time to solution so the design and production cycle can be reduced, thus improving productivity and time to market,” reads the overview for the National Digital Engineering and Manufacturing Consortium (NDEMC).

The motivation here is not simply to level the playing the field for smaller businesses that are struggling to compete with larger ones. Big OEMs, in fact, help identify the SMEs who might be candidates for participating in the NDEMC effort launched with funding from the U.S. Department of Commerce, state governments and private companies. One of the goals is to extend the product-development efficiencies and -quality enhancements that HPC has already brought to the big OEMs to the smaller partners throughout their manufacturing supply chains.

Reasons the NDEMC: “The network of OEMS, SMEs, solution providers, and collaborators that make up the NDEMC will result in accelerated innovation through the use of advanced technology, and an ecosystem of like-minded companies. The goal is greater productivity and profits for all players through an increase of manufacturing jobs remaining in and coming back to the U.S. (i.e. onshoring/reshoring) and increases in U.S. exports.”

Frontiers of Innovation

Where might this democratization of supercomputing’s benefits take the world? How might the extension of this type of processing power to mass audiences ultimately impact our society and shared future? Some of today’s most provocative applications offer a peak into the revolutionary potential of supercomputing.

For example, Harvard Medical School’s Laboratory of Personalized Medicine is leveraging Amazon’s Elastic Compute Cloud service in developing “whole genome analysis testing models in record time,” according to an Amazon Web Services case study. By creating and provisioning scalable computing capacity in the cloud within minutes, the Harvard Medical School lab is able to more quickly execute its work in helping craft revolutionary preventive healthcare strategies that are tailored to individuals’ genetic characteristics.

Other organizations are leveraging Amazon’s high-performance computing services for optimizing wind-power installations, processing high-resolution satellite images and enabling innovations in the methods of reporting and consuming news.

Similarly, an association of R&E institutions in Italy’s Trieste territory, “LightNet,” has launched a network that allows its users to dynamically configure state-of-the-art services. Leveraging a carrier-class, 40Gbit/s DWDM solution for high-speed connectivity and dynamic bandwidth allocation, LightNet supports multi-site computation and data mining – as well as operation of virtual laboratories and digital libraries, high-definition broadcasts of surgical operations, remote control of microscopes, etc. – across a topology of interconnected, redundant fiber rings spanning 320 kilometers.

Already we are seeing proof that supercomputing enables new questions to be both asked and answered. That trend will only intensify as more of the world’s most creative and keenest thinkers are availed to the breakthrough capability.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Google’s Bill Magro, an HPCwire Person to Watch in 2021

June 11, 2021

Last Fall Bill Magro joined Google as CTO of HPC, a newly created position, after two decades at Intel, where he was responsible for the company's HPC strategy. This interview was conducted by email at the beginning of A Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their correspondingly powerful cooling systems. As a result, these Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, with the U.K.-based Cambridge Quantum Computing (CQC), which Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled its in-person component with a couple months’ notice, ISC Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

AWS Solution Channel

Building highly-available HPC infrastructure on AWS

Reminder: You can learn a lot from AWS HPC engineers by subscribing to the HPC Tech Short YouTube channel, and following the AWS HPC Blog channel. Read more…

Space Weather Prediction Gets a Supercomputing Boost

June 9, 2021

Solar winds are a hot topic in the HPC world right now, with supercomputer-powered research spanning from the Princeton Plasma Physics Laboratory (which used Oak Ridge’s Titan system) to University College London (which used resources from the DiRAC HPC facility). One of the larger... Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their c Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

What is Thermodynamic Computing and Could It Become Important?

June 3, 2021

What, exactly, is thermodynamic computing? (Yes, we know everything obeys thermodynamic laws.) A trio of researchers from Microsoft, UC San Diego, and Georgia Tech have written an interesting viewpoint in the June issue... Read more…

AMD Introduces 3D Chiplets, Demos Vertical Cache on Zen 3 CPUs

June 2, 2021

At Computex 2021, held virtually this week, AMD showcased a new 3D chiplet architecture that will be used for future high-performance computing products set to Read more…

Nvidia Expands Its Certified Server Models, Unveils DGX SuperPod Subscriptions

June 2, 2021

Nvidia is busy this week at the virtual Computex 2021 Taipei technology show, announcing an expansion of its nascent Nvidia-certified server program, a range of Read more…

Using HPC Cloud, Researchers Investigate the COVID-19 Lab Leak Hypothesis

May 27, 2021

At the end of 2019, strange pneumonia cases started cropping up in Wuhan, China. As Wuhan (then China, then the world) scrambled to contain what would, of cours Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire