A heterogeneous approach to solving big data analytics graph problems

By Nicole Hemsoth

April 9, 2012

Today’s commodity servers, as well as systems designed specifically for numerically intensive algorithms (“supercomputers”), are ill suited for many applications in the world of big data analytics. Such applications often use graph manipulation algorithms and data structures, and are best addressed by architectural extensions not found in commodity systems. Convey Computer Corporation’s hybrid-core system takes a heterogeneous approach to solving graph-type problems, and the resulting performance is characterized by results on the Graph500 Benchmark (www.graph500.org). Let’s take a look at architectural features that accelerate graph problems, and how Convey has implemented these features in its reconfigurable computing system.

Big Data Analytics and Graph Algorithms

Many analytics applications utilize graph algorithms and data structures to allow discovery of relationships between data elements in a large database. Generally, modeling these relationships in software and hardware is “reasonably” easy. (Let’s say the core graph manipulation algorithms are fairly easy, the implementation as it pertains to a several petabyte database may not be so easy!) Data structures can be constructed that contain information about specific nodes in a graph, connections and relationships to other nodes, and so on.

Certainly graph problems aren’t new. However, using graph algorithms to traverse graphs that have billions of nodes and edges and require many terabytes of storage is new (and “different”). And computer architectures that effectively execute these algorithms are also new; as the National Science Foundation states: “Data intensive computing demands a fundamentally different set of principles than mainstream computing.” [1]

Desirable architectural features

What types of architectural features are desirable in a computer system that executes graph algorithms? Following are some of the features that can give the most performance for the least cost/space/power:

Balance between compute elements and memory subsystem performance. Most data-intensive problems require minimal compute resources (especially in terms of floating operations), and require more memory subsystem performance. Ideally, as in a reconfigurable or hybrid-core computing system, the compute elements can be changed on the fly to adapt to the application’s compute needs.

High bandwidth, highly parallel memory subsystem. Attainable memory bandwidth (not peak) should be as high as possible. In addition, many thousands of simultaneous outstanding requests should be supported to support parallelism and mitigate latency.

Massive multi-threaded capability. A combination of compute and memory requirements, the ability to support tens or hundreds of thousands of concurrent execution threads is desirable. More parallelism reduces time-to-answer, improves hardware utilization, and increases efficiency.

Hardware-based synchronization primitives. With high degrees of parallelism comes the challenge of synchronizing read/write access to memory locations. Data integrity demands that a read-modify-write operation to a memory location is an indivisible operation. When the synchronization mechanism is “further away” from the operation, more time is spent waiting for the synchronization, with a corresponding reduction in efficiency of parallelization. Ideally, synchronization is implemented in hardware in the memory subsystem.

_______________________
[1] http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503324&org=IIS

The Graph 500 benchmark

Recognizing the need for a benchmark suite that will more accurately measure performance on graph-type problems, a steering committee of HPC experts from academia, industry, and national laboratories created the Graph500 benchmark. Currently the benchmark constructs an undirected graph and measures the performance of a kernel that executes a breadth-first search of graph.[2][3]

The kernel of the breadth-first search portion of the benchmark (Figure 2) contains multiple constructs that are common to many graph-type algorithms—specifically a high degree of parallelism, and indirect (or “vector of indices”) memory references.


 Convey Fig. 2

Figure 2. The kernel of the breadth-first search algorithm extracted from the graph500 release code.

 

Hybrid-core computing and the Graph 500 benchmark

The Convey hybrid-core systems offer a balanced architecture: reconfigurable compute elements (via Field Programmable Gate Arrays—FPGAs), and a supercomputing-inspired memory subsystem (Figure 3).


Convey Fig. 3

 


Figure 3. Overview of the Convey hybrid-core computing architecture.

_______________________
[2] http://www.graph500.org/index.html
[3] http://en.wikipedia.org/wiki/Breadth-first_search

The benefit of hybrid-core computing is that the compute-intensive kernel of the Graph500 breadth-first search is implemented in hardware on the FPGAs in the coprocessor. The FPGA implementation allows much more parallelism than a commodity system (the Convey memory subsystem allows up to 8,192 outstanding concurrent memory references). The increase in parallelism combined with the hardware implementation of the logic portions of the algorithm allow for increased overall performance with much less hardware.

In addition to increased parallelism, the memory subsystem of the Convey systems is specifically designed to provide high bandwidth for parallel references that exhibit poor locality (e.g. offers high performance for random accesses). Thus, the vector of indices portion of the code is highly accelerated over architectures that are not well suited for random accesses.

Performance results

The architecture of the Convey hybrid-core systems lends itself exceedingly well to the Graph500 benchmark (Figure 4). While the problem size is considered “small” (which is understandable, given that the benchmark is run on a single node system), the performance-per-watt and performance-per-dollar are well beyond any other system on the list.

Figure 4 is a partial list (problem scale 28-31) of the performance results for the November 2011 release of the Graph500 benchmark. Approximate power requirements allow for an arbitrary metric illustrating power efficiency (MTEPS/kw).


Convey Fig. 4

 


Figure 4. Performance and power on the Graph500 benchmark (for problem size 28-31).[4]

Conclusions

The massive explosion of data available for analysis and understanding is creating a “whole new dimension to HPC,” with demands on existing HPC architectures that cannot be fulfilled by current commodity systems.  Future generations of HPC systems will be required to acknowledge some of the architectural requirements of data-intensive algorithms. For example, memory subsystems will need to increase effective bandwidth, more parallelism will be needed, and synchronization primitives will need to be “closer” to the memory subsystem.

By implementing a balanced, hybrid approach, Convey’s hybrid-core family of systems are able to execute problems in the data-intensive sciences much more effectively. The hybrid-core architecture is poised for exascale levels of computing in the data-intensive sciences because it offers reconfigurable compute elements balanced with a supercomputer-inspired memory subsystem.

_______________________

[4] One entry was removed (#17) because it employed a different BFS algorithm.

For more information, please see http://www.conveycomputer.com/sc11/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. The news follows HPE’s acquisition nearly three years ago o Read more…

By Doug Black & Tiffany Trader

China Establishes Seventh National Supercomputing Center

May 16, 2019

Chinese media is reporting that China will construct a new National Supercomputer Center in Zhengzhou, in central China's Henan Province. The new Zhengzhou facility will house a 100-petaflops supercomputer and will be ta Read more…

By Staff report

Interview with 2019 Person to Watch Ken King

May 16, 2019

Today, as the final installment of our HPCwire People to Watch focus series, we present our interview with Ken King, general manager of OpenPOWER for the IBM Systems Group. Ken is responsible for building and managing t Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Autonomous Vehicles: New challenges for the CAE Data Center

Managing infrastructure complexity in the age of AI

When most of us hear the term autonomous vehicles, we conjure up images of driverless Waymos or robotic transport trucks driving long-haul highway routes. Read more…

What’s New in HPC Research: Image Classification, Crowd Computing, Genome Informatics & More

May 15, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

CCC Offers Draft 20-Year AI Roadmap; Seeks Comments

May 14, 2019

Artificial Intelligence in all its guises has captured much of the conversation in HPC and general computing today. The White House, DARPA, IARPA, and Departmen Read more…

By John Russell

Cascade Lake Shows Up to 84 Percent Gen-on-Gen Advantage on STAC Benchmarking

May 13, 2019

The Securities Technology Analysis Center (STAC) issued a report Friday comparing the performance of Intel's Cascade Lake processors with previous-gen Skylake u Read more…

By Tiffany Trader

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

ASC19: NTHU Returns to Glory

May 11, 2019

As many of you Student Cluster Competition fanatics know by now, Taiwan’s National Tsing Hua University (NTHU) won the gold medal at the recently concluded AS Read more…

By Dan Olds

Intel 7nm GPU on Roadmap for 2021, OneAPI Coming This Year

May 8, 2019

At Intel's investor meeting today in Santa Clara, Calif., the company filled in details of its roadmap and product launch plans and sought to allay concerns about delays of its 10nm chips. In laying out its 10nm and 7nm timelines, Intel revealed that its first 7nm product would be... Read more…

By Tiffany Trader

Ten Great Reasons to Build the 1.5 Exaflops Frontier

May 7, 2019

It’s perhaps obvious that the fundamental reason for building expensive exascale computers is to drive science and industry forward, realizing the resulting b Read more…

By John Russell

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This