A heterogeneous approach to solving big data analytics graph problems

By Nicole Hemsoth

April 9, 2012

Today’s commodity servers, as well as systems designed specifically for numerically intensive algorithms (“supercomputers”), are ill suited for many applications in the world of big data analytics. Such applications often use graph manipulation algorithms and data structures, and are best addressed by architectural extensions not found in commodity systems. Convey Computer Corporation’s hybrid-core system takes a heterogeneous approach to solving graph-type problems, and the resulting performance is characterized by results on the Graph500 Benchmark (www.graph500.org). Let’s take a look at architectural features that accelerate graph problems, and how Convey has implemented these features in its reconfigurable computing system.

Big Data Analytics and Graph Algorithms

Many analytics applications utilize graph algorithms and data structures to allow discovery of relationships between data elements in a large database. Generally, modeling these relationships in software and hardware is “reasonably” easy. (Let’s say the core graph manipulation algorithms are fairly easy, the implementation as it pertains to a several petabyte database may not be so easy!) Data structures can be constructed that contain information about specific nodes in a graph, connections and relationships to other nodes, and so on.

Certainly graph problems aren’t new. However, using graph algorithms to traverse graphs that have billions of nodes and edges and require many terabytes of storage is new (and “different”). And computer architectures that effectively execute these algorithms are also new; as the National Science Foundation states: “Data intensive computing demands a fundamentally different set of principles than mainstream computing.” [1]

Desirable architectural features

What types of architectural features are desirable in a computer system that executes graph algorithms? Following are some of the features that can give the most performance for the least cost/space/power:

Balance between compute elements and memory subsystem performance. Most data-intensive problems require minimal compute resources (especially in terms of floating operations), and require more memory subsystem performance. Ideally, as in a reconfigurable or hybrid-core computing system, the compute elements can be changed on the fly to adapt to the application’s compute needs.

High bandwidth, highly parallel memory subsystem. Attainable memory bandwidth (not peak) should be as high as possible. In addition, many thousands of simultaneous outstanding requests should be supported to support parallelism and mitigate latency.

Massive multi-threaded capability. A combination of compute and memory requirements, the ability to support tens or hundreds of thousands of concurrent execution threads is desirable. More parallelism reduces time-to-answer, improves hardware utilization, and increases efficiency.

Hardware-based synchronization primitives. With high degrees of parallelism comes the challenge of synchronizing read/write access to memory locations. Data integrity demands that a read-modify-write operation to a memory location is an indivisible operation. When the synchronization mechanism is “further away” from the operation, more time is spent waiting for the synchronization, with a corresponding reduction in efficiency of parallelization. Ideally, synchronization is implemented in hardware in the memory subsystem.

[1] http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503324&org=IIS

The Graph 500 benchmark

Recognizing the need for a benchmark suite that will more accurately measure performance on graph-type problems, a steering committee of HPC experts from academia, industry, and national laboratories created the Graph500 benchmark. Currently the benchmark constructs an undirected graph and measures the performance of a kernel that executes a breadth-first search of graph.[2][3]

The kernel of the breadth-first search portion of the benchmark (Figure 2) contains multiple constructs that are common to many graph-type algorithms—specifically a high degree of parallelism, and indirect (or “vector of indices”) memory references.

 Convey Fig. 2

Figure 2. The kernel of the breadth-first search algorithm extracted from the graph500 release code.


Hybrid-core computing and the Graph 500 benchmark

The Convey hybrid-core systems offer a balanced architecture: reconfigurable compute elements (via Field Programmable Gate Arrays—FPGAs), and a supercomputing-inspired memory subsystem (Figure 3).

Convey Fig. 3


Figure 3. Overview of the Convey hybrid-core computing architecture.

[2] http://www.graph500.org/index.html
[3] http://en.wikipedia.org/wiki/Breadth-first_search

The benefit of hybrid-core computing is that the compute-intensive kernel of the Graph500 breadth-first search is implemented in hardware on the FPGAs in the coprocessor. The FPGA implementation allows much more parallelism than a commodity system (the Convey memory subsystem allows up to 8,192 outstanding concurrent memory references). The increase in parallelism combined with the hardware implementation of the logic portions of the algorithm allow for increased overall performance with much less hardware.

In addition to increased parallelism, the memory subsystem of the Convey systems is specifically designed to provide high bandwidth for parallel references that exhibit poor locality (e.g. offers high performance for random accesses). Thus, the vector of indices portion of the code is highly accelerated over architectures that are not well suited for random accesses.

Performance results

The architecture of the Convey hybrid-core systems lends itself exceedingly well to the Graph500 benchmark (Figure 4). While the problem size is considered “small” (which is understandable, given that the benchmark is run on a single node system), the performance-per-watt and performance-per-dollar are well beyond any other system on the list.

Figure 4 is a partial list (problem scale 28-31) of the performance results for the November 2011 release of the Graph500 benchmark. Approximate power requirements allow for an arbitrary metric illustrating power efficiency (MTEPS/kw).

Convey Fig. 4


Figure 4. Performance and power on the Graph500 benchmark (for problem size 28-31).[4]


The massive explosion of data available for analysis and understanding is creating a “whole new dimension to HPC,” with demands on existing HPC architectures that cannot be fulfilled by current commodity systems.  Future generations of HPC systems will be required to acknowledge some of the architectural requirements of data-intensive algorithms. For example, memory subsystems will need to increase effective bandwidth, more parallelism will be needed, and synchronization primitives will need to be “closer” to the memory subsystem.

By implementing a balanced, hybrid approach, Convey’s hybrid-core family of systems are able to execute problems in the data-intensive sciences much more effectively. The hybrid-core architecture is poised for exascale levels of computing in the data-intensive sciences because it offers reconfigurable compute elements balanced with a supercomputer-inspired memory subsystem.


[4] One entry was removed (#17) because it employed a different BFS algorithm.

For more information, please see http://www.conveycomputer.com/sc11/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data West Brings Technology Leaders to SDSC

December 6, 2018

Data and technology enthusiasts from around the world descended upon the San Diego Supercomputing Center (SDSC) for the third annual Data West conference, which is taking place this week on the campus of the University o Read more…

By Alex Woodie

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are Read more…

By James Reinders

What’s New in HPC Research: Automatic Energy Efficiency, DNA Data Analysis, Post-Exascale & More

December 6, 2018

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Five Steps to Building a Data Strategy for AI

Our data-centric world is driving many organizations to apply advanced analytics that use artificial intelligence (AI). AI provides intelligent answers to challenging business questions. AI also enables highly personalized user experiences, built when data scientists and analysts learn new information from data that would otherwise go undetected using traditional analytics methods. Read more…

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar conc Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

AWS Debuts Lustre as a Service, Accelerates Data Transfer

November 28, 2018

From the Amazon re:Invent main stage in Las Vegas today, Amazon Web Services CEO Andy Jassy introduced Amazon FSx for Lustre, citing a growing body of applicati Read more…

By Tiffany Trader

AWS Launches First Arm Cloud Instances

November 28, 2018

AWS, a macrocosm of the emerging high-performance technology landscape, wants to be everywhere you want to be and offer everything you want to use (or at least Read more…

By Doug Black

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

DOE Under Secretary for Science Paul Dabbar Interviewed at SC18

November 21, 2018

During the 30th annual SC conference in Dallas last week, SC18 hosted U.S. Department of Energy Under Secretary for Science Paul M. Dabbar. In attendance Nov. 13-14, Dabbar delivered remarks at the Top500 panel, met with a number of industry stakeholders and toured the show floor. He also met with HPCwire for an interview, where we discussed the role of the DOE in advancing leadership computing. Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This