A heterogeneous approach to solving big data analytics graph problems

By Nicole Hemsoth

April 9, 2012

Today’s commodity servers, as well as systems designed specifically for numerically intensive algorithms (“supercomputers”), are ill suited for many applications in the world of big data analytics. Such applications often use graph manipulation algorithms and data structures, and are best addressed by architectural extensions not found in commodity systems. Convey Computer Corporation’s hybrid-core system takes a heterogeneous approach to solving graph-type problems, and the resulting performance is characterized by results on the Graph500 Benchmark (www.graph500.org). Let’s take a look at architectural features that accelerate graph problems, and how Convey has implemented these features in its reconfigurable computing system.

Big Data Analytics and Graph Algorithms

Many analytics applications utilize graph algorithms and data structures to allow discovery of relationships between data elements in a large database. Generally, modeling these relationships in software and hardware is “reasonably” easy. (Let’s say the core graph manipulation algorithms are fairly easy, the implementation as it pertains to a several petabyte database may not be so easy!) Data structures can be constructed that contain information about specific nodes in a graph, connections and relationships to other nodes, and so on.

Certainly graph problems aren’t new. However, using graph algorithms to traverse graphs that have billions of nodes and edges and require many terabytes of storage is new (and “different”). And computer architectures that effectively execute these algorithms are also new; as the National Science Foundation states: “Data intensive computing demands a fundamentally different set of principles than mainstream computing.” [1]

Desirable architectural features

What types of architectural features are desirable in a computer system that executes graph algorithms? Following are some of the features that can give the most performance for the least cost/space/power:

Balance between compute elements and memory subsystem performance. Most data-intensive problems require minimal compute resources (especially in terms of floating operations), and require more memory subsystem performance. Ideally, as in a reconfigurable or hybrid-core computing system, the compute elements can be changed on the fly to adapt to the application’s compute needs.

High bandwidth, highly parallel memory subsystem. Attainable memory bandwidth (not peak) should be as high as possible. In addition, many thousands of simultaneous outstanding requests should be supported to support parallelism and mitigate latency.

Massive multi-threaded capability. A combination of compute and memory requirements, the ability to support tens or hundreds of thousands of concurrent execution threads is desirable. More parallelism reduces time-to-answer, improves hardware utilization, and increases efficiency.

Hardware-based synchronization primitives. With high degrees of parallelism comes the challenge of synchronizing read/write access to memory locations. Data integrity demands that a read-modify-write operation to a memory location is an indivisible operation. When the synchronization mechanism is “further away” from the operation, more time is spent waiting for the synchronization, with a corresponding reduction in efficiency of parallelization. Ideally, synchronization is implemented in hardware in the memory subsystem.

_______________________
[1] http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503324&org=IIS

The Graph 500 benchmark

Recognizing the need for a benchmark suite that will more accurately measure performance on graph-type problems, a steering committee of HPC experts from academia, industry, and national laboratories created the Graph500 benchmark. Currently the benchmark constructs an undirected graph and measures the performance of a kernel that executes a breadth-first search of graph.[2][3]

The kernel of the breadth-first search portion of the benchmark (Figure 2) contains multiple constructs that are common to many graph-type algorithms—specifically a high degree of parallelism, and indirect (or “vector of indices”) memory references.


 Convey Fig. 2

Figure 2. The kernel of the breadth-first search algorithm extracted from the graph500 release code.

 

Hybrid-core computing and the Graph 500 benchmark

The Convey hybrid-core systems offer a balanced architecture: reconfigurable compute elements (via Field Programmable Gate Arrays—FPGAs), and a supercomputing-inspired memory subsystem (Figure 3).


Convey Fig. 3

 


Figure 3. Overview of the Convey hybrid-core computing architecture.

_______________________
[2] http://www.graph500.org/index.html
[3] http://en.wikipedia.org/wiki/Breadth-first_search

The benefit of hybrid-core computing is that the compute-intensive kernel of the Graph500 breadth-first search is implemented in hardware on the FPGAs in the coprocessor. The FPGA implementation allows much more parallelism than a commodity system (the Convey memory subsystem allows up to 8,192 outstanding concurrent memory references). The increase in parallelism combined with the hardware implementation of the logic portions of the algorithm allow for increased overall performance with much less hardware.

In addition to increased parallelism, the memory subsystem of the Convey systems is specifically designed to provide high bandwidth for parallel references that exhibit poor locality (e.g. offers high performance for random accesses). Thus, the vector of indices portion of the code is highly accelerated over architectures that are not well suited for random accesses.

Performance results

The architecture of the Convey hybrid-core systems lends itself exceedingly well to the Graph500 benchmark (Figure 4). While the problem size is considered “small” (which is understandable, given that the benchmark is run on a single node system), the performance-per-watt and performance-per-dollar are well beyond any other system on the list.

Figure 4 is a partial list (problem scale 28-31) of the performance results for the November 2011 release of the Graph500 benchmark. Approximate power requirements allow for an arbitrary metric illustrating power efficiency (MTEPS/kw).


Convey Fig. 4

 


Figure 4. Performance and power on the Graph500 benchmark (for problem size 28-31).[4]

Conclusions

The massive explosion of data available for analysis and understanding is creating a “whole new dimension to HPC,” with demands on existing HPC architectures that cannot be fulfilled by current commodity systems.  Future generations of HPC systems will be required to acknowledge some of the architectural requirements of data-intensive algorithms. For example, memory subsystems will need to increase effective bandwidth, more parallelism will be needed, and synchronization primitives will need to be “closer” to the memory subsystem.

By implementing a balanced, hybrid approach, Convey’s hybrid-core family of systems are able to execute problems in the data-intensive sciences much more effectively. The hybrid-core architecture is poised for exascale levels of computing in the data-intensive sciences because it offers reconfigurable compute elements balanced with a supercomputer-inspired memory subsystem.

_______________________

[4] One entry was removed (#17) because it employed a different BFS algorithm.

For more information, please see http://www.conveycomputer.com/sc11/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information about the upc Read more…

By Tiffany Trader

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

OpenACC Shows Growing Strength at ISC

June 19, 2017

OpenACC is strutting its stuff at ISC this year touting expanding membership, a jump in downloads, favorable benchmarks across several architectures, new staff members, and new support by key HPC applications providers, Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major shakeups -- China still has the top two spots locked with th Read more…

By Tiffany Trader

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascal Read more…

By Tiffany Trader

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

OpenACC Shows Growing Strength at ISC

June 19, 2017

OpenACC is strutting its stuff at ISC this year touting expanding membership, a jump in downloads, favorable benchmarks across several architectures, new staff Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This