A heterogeneous approach to solving big data analytics graph problems

By Nicole Hemsoth

April 9, 2012

Today’s commodity servers, as well as systems designed specifically for numerically intensive algorithms (“supercomputers”), are ill suited for many applications in the world of big data analytics. Such applications often use graph manipulation algorithms and data structures, and are best addressed by architectural extensions not found in commodity systems. Convey Computer Corporation’s hybrid-core system takes a heterogeneous approach to solving graph-type problems, and the resulting performance is characterized by results on the Graph500 Benchmark (www.graph500.org). Let’s take a look at architectural features that accelerate graph problems, and how Convey has implemented these features in its reconfigurable computing system.

Big Data Analytics and Graph Algorithms

Many analytics applications utilize graph algorithms and data structures to allow discovery of relationships between data elements in a large database. Generally, modeling these relationships in software and hardware is “reasonably” easy. (Let’s say the core graph manipulation algorithms are fairly easy, the implementation as it pertains to a several petabyte database may not be so easy!) Data structures can be constructed that contain information about specific nodes in a graph, connections and relationships to other nodes, and so on.

Certainly graph problems aren’t new. However, using graph algorithms to traverse graphs that have billions of nodes and edges and require many terabytes of storage is new (and “different”). And computer architectures that effectively execute these algorithms are also new; as the National Science Foundation states: “Data intensive computing demands a fundamentally different set of principles than mainstream computing.” [1]

Desirable architectural features

What types of architectural features are desirable in a computer system that executes graph algorithms? Following are some of the features that can give the most performance for the least cost/space/power:

Balance between compute elements and memory subsystem performance. Most data-intensive problems require minimal compute resources (especially in terms of floating operations), and require more memory subsystem performance. Ideally, as in a reconfigurable or hybrid-core computing system, the compute elements can be changed on the fly to adapt to the application’s compute needs.

High bandwidth, highly parallel memory subsystem. Attainable memory bandwidth (not peak) should be as high as possible. In addition, many thousands of simultaneous outstanding requests should be supported to support parallelism and mitigate latency.

Massive multi-threaded capability. A combination of compute and memory requirements, the ability to support tens or hundreds of thousands of concurrent execution threads is desirable. More parallelism reduces time-to-answer, improves hardware utilization, and increases efficiency.

Hardware-based synchronization primitives. With high degrees of parallelism comes the challenge of synchronizing read/write access to memory locations. Data integrity demands that a read-modify-write operation to a memory location is an indivisible operation. When the synchronization mechanism is “further away” from the operation, more time is spent waiting for the synchronization, with a corresponding reduction in efficiency of parallelization. Ideally, synchronization is implemented in hardware in the memory subsystem.

_______________________
[1] http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503324&org=IIS

The Graph 500 benchmark

Recognizing the need for a benchmark suite that will more accurately measure performance on graph-type problems, a steering committee of HPC experts from academia, industry, and national laboratories created the Graph500 benchmark. Currently the benchmark constructs an undirected graph and measures the performance of a kernel that executes a breadth-first search of graph.[2][3]

The kernel of the breadth-first search portion of the benchmark (Figure 2) contains multiple constructs that are common to many graph-type algorithms—specifically a high degree of parallelism, and indirect (or “vector of indices”) memory references.


 Convey Fig. 2

Figure 2. The kernel of the breadth-first search algorithm extracted from the graph500 release code.

 

Hybrid-core computing and the Graph 500 benchmark

The Convey hybrid-core systems offer a balanced architecture: reconfigurable compute elements (via Field Programmable Gate Arrays—FPGAs), and a supercomputing-inspired memory subsystem (Figure 3).


Convey Fig. 3

 


Figure 3. Overview of the Convey hybrid-core computing architecture.

_______________________
[2] http://www.graph500.org/index.html
[3] http://en.wikipedia.org/wiki/Breadth-first_search

The benefit of hybrid-core computing is that the compute-intensive kernel of the Graph500 breadth-first search is implemented in hardware on the FPGAs in the coprocessor. The FPGA implementation allows much more parallelism than a commodity system (the Convey memory subsystem allows up to 8,192 outstanding concurrent memory references). The increase in parallelism combined with the hardware implementation of the logic portions of the algorithm allow for increased overall performance with much less hardware.

In addition to increased parallelism, the memory subsystem of the Convey systems is specifically designed to provide high bandwidth for parallel references that exhibit poor locality (e.g. offers high performance for random accesses). Thus, the vector of indices portion of the code is highly accelerated over architectures that are not well suited for random accesses.

Performance results

The architecture of the Convey hybrid-core systems lends itself exceedingly well to the Graph500 benchmark (Figure 4). While the problem size is considered “small” (which is understandable, given that the benchmark is run on a single node system), the performance-per-watt and performance-per-dollar are well beyond any other system on the list.

Figure 4 is a partial list (problem scale 28-31) of the performance results for the November 2011 release of the Graph500 benchmark. Approximate power requirements allow for an arbitrary metric illustrating power efficiency (MTEPS/kw).


Convey Fig. 4

 


Figure 4. Performance and power on the Graph500 benchmark (for problem size 28-31).[4]

Conclusions

The massive explosion of data available for analysis and understanding is creating a “whole new dimension to HPC,” with demands on existing HPC architectures that cannot be fulfilled by current commodity systems.  Future generations of HPC systems will be required to acknowledge some of the architectural requirements of data-intensive algorithms. For example, memory subsystems will need to increase effective bandwidth, more parallelism will be needed, and synchronization primitives will need to be “closer” to the memory subsystem.

By implementing a balanced, hybrid approach, Convey’s hybrid-core family of systems are able to execute problems in the data-intensive sciences much more effectively. The hybrid-core architecture is poised for exascale levels of computing in the data-intensive sciences because it offers reconfigurable compute elements balanced with a supercomputer-inspired memory subsystem.

_______________________

[4] One entry was removed (#17) because it employed a different BFS algorithm.

For more information, please see http://www.conveycomputer.com/sc11/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire