The Processors of Petascale

By Michael Feldman

April 10, 2012

While the supercomputing digerati argue about what an exascale machine will look like at the end of this decade, recent history suggests that there will be a healthy diversity of designs, at least with regard to processor architecture. As of this week, there are 20 known petascale systems deployed, which in aggregate encompass five different varieties of microprocessors. And that level of diversity shows no signs of reversing itself.

Of the 20 petascale supercomputers up and running today, eight use x86 CPUs (AMD Opterons or Intel Xeons) exclusively; seven employ an x86/GPU combo; two are based on Fujitsu’s SPARC64 CPUs; one uses the Chinese ShenWei SW1600 processor; one is powered by IBM’s PowerPC 450 CPU, and the final system uses the PowerXCell 8i alongside AMD x86 CPUs.

Below are the current systems that have achieved at least one petaflop of peak performance. Not all of these are on the latest TOP500 list since a number of them were installed or upgraded since the rankings were updated in November 2011.

System Country Processor Interconnect Petaflops
K Computer  Japan  Fujitsu SPARC64  Tofu  11.28
 Tianhe-1A  China  Intel x86/NVIDIA GPU  Galaxy  4.70
 Nebulae  China  Intel x86/NVIDIA GPU  InfiniBand  2.98
 Jaguar  US  AMD x86  Gemini  2.33
 TSUBAME 2  Japan  Intel x86/NVIDIA GPU  InfiniBand  2.29
 CURIE  France  Intel x86/NVIDIA GPU  InfiniBand  2.00
 Helios  Japan  Intel x86  InfiniBand  1.50
 Roadrunner  US  AMD x86/PowerXCell  InfiniBand  1.37
Lomonosov  Russia  Intel x86/NVIDIA GPU  InfiniBand  1.37
 Cielo  US  AMD x86  Gemini  1.36
 Tianhe-1A Hunan  China  Intel x86/NVIDIA GPU  Galaxy  1.34
 Pleiades  US  Intel x86  InfiniBand  1.32
 Hopper  US  AMD x86  Gemini  1.29
 Tera-100  France  Intel x86  InfiniBand  1.25
 Kraken  US  AMD x86  SeaStar  1.17
 Oakleaf-FX  Japan  Fujitsu SPARC64  Tofu  1.13
Sunway Blue Light  ChinaChina  ShenWei SW1600  InfiniBand  1.07
 HERMIT  Germany  AMD x86  Gemini  1.04
 Mole 8.5  China  Intel x86/NVIDIA GPU  InfiniBand  1.01
 JUGENE  Germany  PowerPC 450  Custom  1.00

As you can see, more than a third of the current petascale supers rely solely on x86 CPUs, either AMD Opterons or Intel Xeons. But the x86/GPU combo systems are nearly as numerous. In fact, since the Opteron-only Jaguar system at Oak Ridge National Lab is now being transformed into the x86/GPU Titan machine, this hybrid arrangement is becoming the most popular configuration. It’s notable that half of the x86/GPU petaflop machines are currently deployed in China.

The fastest x86 CPUs (in this case, the top-end 8-core Sandy Bridge Xeons) can deliver around 160 gigaflops, while consuming 130 to 135 watts. On the other hand, NVIDIA’s top-of-the line Tesla part (the M2090) can hit 665 gigaflops, while consuming 225 watts. Although harder to program than CPUs, the superior performance and performance/watt of GPUs is driving the rapid adoption of these graphics processors in high performance computing.

The newest petascale system is the Oakleaf-FX, a Fujitsu supercomputer based on its PRIMEHPC FX10 servers. That machine was just completed last week for the University of Tokyo. Kyushu University has ordered a system with PRIMEHPC FX10 servers as well, although in this case, it’s a sub-petascale machine (691 teraflops) and gets three-quarters of its flops from adjoining x86-based PRIMERGY CX400 nodes.

Oakleaf-FX represents the first supercomputer installed with Fujitsu’s newest SPARC64 IXfx CPUs. Its precursor, the SPARC64 VIIIfx, powers RIKEN’s 10-plus petaflop K Computer, which is currently the reigning champ on the TOP500. The SPARC64 VIIIfx is an 8-core chip and at 2.00 GHz delivers 128 gigaflops, while the newer SPARC64 IXfx, at 1.85 GHz contains 16 cores and delivers 236.5 peak gigaflops. Fujitsu says a PRIMEHPC FX10 cluster can scale up to 23.2 petaflops, which would entail a system with about 100 thousand of these CPUs.

Fujitsu’s SPARC64 fx series chips were specifically designed with HPC in mind, something they have in common with the Chinese ShenWei SW1600 processor that was developed at the Jiangnán Computing Research Lab. Like the SPARC64 IXfx, the SW1600 is a 16-core RISC processor, although it runs quite a bit slower that its Japanese counterpart. At 1 GHz, the Chinese chip delivers around 140 gigaflops.

The only system currently deployed with SW1600 silicon (that we know of) is the Sunway Blue Light, a one-petaflop machine that is housed at the National Supercomputing Center in Jinan. Announced in October 2011, the Sunway machine represents the first Chinese supercomputer built with domestically designed processors

There is currently only a single petascale Blue Gene supercomputer in the field, JUGENE, a one-petaflop Blue Gene/P system at Forschungszentrum Jülich that is powered by more than 73,000 PowerPC 450 CPUs. The PowerPC architecture, which has its roots in the embedded computing space, was chosen mainly for its energy efficient performance. At 850 MHz, the chip delivers a modest 13.6 gigaflops, but draws only around 25 watts of power.

The odd one out is the PowerXCell 8i, a Cell processor variant IBM designed for HPC duty. The PowerXCell 8i debuted in the world’s first petaflop system, Roadrunner, which was booted up in 2008. That system employed the processor as an accelerator alongside AMD Opteron CPUs, using IBM’s QS22 blade server. Each PowerXCell 8i consists of a Power Processing Element and eight Synergistic Processing Elements (SPEs) that together deliver 102.4 gigaflops — a whopping amount for a 2008-era processor.

Unfortunately for IBM, GPU computing was coming onto the scene just as the PowerXCell 8i was debuting. Thanks to a concerted effort by NVIDIA to build GPU accelerators for HPC, not to mention a more favorable business model for graphics processors, IBM decided to abandon any follow-up to the PowerXCell 8i (At one point IBM was said to have a 32-SPE PowerXCell on the drawing board.) Roadrunner would be the first and last Cell processor-based supercomputer.

Even though the PowerXCell design died an untimely death, there are some new processors on the horizon to takes its place. The most well known is Intel’s Many Integrated Core (MIC) chip, a manycore x86 architecture based on the “Larrabee” prototype. The first implementation, known as Knights Corner, is expected to deliver more than a teraflop of double precision floating point performance when its introduced in late 2012 or early 2013.

The Stampede supercomputer, which will be installed at the Texas Advanced Computing Center (TACC) later this year, will use Knights Corner and Xeon parts as the computational foundation. That system is expected to top 10 petaflops when it officially goes into production in early 2013.

Later this year two multi-petaflop Blue Gene/Q supercomputers, powered by the new Power A2 CPUs, will be brought online. Sequoia, a 20-petaflop supercomputer, will be installed at Lawrence Livermore National Lab, and Mira, a 10-petaflop machine will go to Argonne. Both are expected to go into production before the end of the year. UK’s Daresbury Laboratory is also in line for a petaflop-plus Blue Gene/Q system, although the deployment date has not been set.

A derivative of the PowerPC architecture that was the basis of the Blue Gene/L and Blue Gene/P ASICs, the Power A2 is a much more powerful chip. Instead of the measly 4 cores of the PowerPC 450, the new silicon houses 18 cores — 16 for the application, 1 for the OS, and a spare. And even at a modest 55 watts (1.5 GHz), the Power A2 delivers 204.8 gigaflops. Thanks to the chip’s exceptional energy efficiency, Blue Gene/Q systems are currently the number 1 and 2 systems on the latest Green500 list, although both of these are sub-petaflop machines.

Other petascale supercomputers expected to show up in 2012 include the aforementioned Titan at Oak Ridge (10 to 20 petaflops), Blue Waters at NCSA ( 11.5 petaflops), the SuperMUC system at Leibniz Supercomputer Center (3 petaflops). The first two will use the x86/GPU hybrid configuration using Opteron CPUs and the upcoming NVIDIA Kepler GPUs. SuperMUC is all x86 Xeons.

The Chinese designed Godson-3C processor is also expected to eventually show up in some petascale systems, although not this year. The 16-core chip is said to deliver 512 gigaflops and is slated to launch sometime in 2013. According to Godson processor lead designer Weiwu Hu, the 3C chips will be used to power a petascale supercomputer build by Dawning (now Sugon).

There is also the FeiTeng processor, which is being developed by China’s National University of Defense Technology. Although no petascale systems based the these chips have been announced, it offers China yet another option for building native supercomputers in the future.

So what does this mean for exascale? If history repeats itself, the first such systems will be powered by exotic processors, but eventually more commodity-based silicon will take over. Power consumption is the biggest constraint for large supercomputers now, so we may very well see other processor architectures like ARM come to the fore. And with the Chinese developing their own stable of HPC processors, the whole supercomputing game could change before the end of the decade.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ASC23: LINPACK Results

May 30, 2023

With ISC23 now in the rearview mirror, let’s get back to the results from the ASC23 Student Cluster Competition. In our last articles, we looked at the competition and applications,  plus introduced the teams, now it� Read more…

At ISC, Sustainable Computing Leaders Discuss HPC’s Energy Crossroads

May 30, 2023

In the wake of SC22 last year, HPCwire wrote that “the conference’s eyes had shifted to carbon emissions and energy intensity” rather than the historical emphasis on flops-per-watt and power usage effectiveness (PU Read more…

Nvidia Launches Spectrum-X Networking Platform for Generative AI

May 29, 2023

Nvidia launched a new Ethernet-based networking platform – the Nvidia Spectrum-X – that targets generative AI workloads. Based on tight coupling of the Nvidia Spectrum-4 Ethernet switch with the Nvidia BlueField-3 D Read more…

Nvidia Announces Four Supercomputers, with Two in Taiwan

May 29, 2023

At the Computex event in Taipei this week, Nvidia announced four new systems equipped with its Grace- and Hopper-generation hardware, including two in Taiwan. Those two are Taiwania 4, powered by Nvidia’s Grace CPU Sup Read more…

Nvidia Announces New ‘1 Exaflops’ AI Supercomputer; Grace-Hopper in ‘Full Production’

May 28, 2023

We in HPC sometimes roll our eyes at the term “AI supercomputer,” but a new system from Nvidia might live up to the moniker: the DGX GH200 AI supercomputer. Announced tonight (mid-day Monday in Taiwan) at Computex in Read more…

AWS Solution Channel

Shutterstock 1493175377

Introducing GPU health checks in AWS ParallelCluster 3.6

GPU failures are relatively rare but when they do occur, they can have severe consequences for HPC and deep learning tasks. For example, they can disrupt long-running simulations and distributed training jobs. Read more…

 

Shutterstock 1415788655

New Thoughts on Leveraging Cloud for Advanced AI

Artificial intelligence (AI) is becoming critical to many operations within companies. As the use and sophistication of AI grow, there is a new focus on the infrastructure requirements to produce results fast and efficiently. Read more…

Closing ISC Keynote by Sterling and Suarez Looks Backward and Forward

May 25, 2023

ISC’s closing keynote this year was given jointly by a pair of distinguished HPC leaders, Thomas Sterling of Indiana University and Estela Suarez of Jülich Supercomputing Centre (JSC). Ostensibly, Sterling tackled the Read more…

ASC23: LINPACK Results

May 30, 2023

With ISC23 now in the rearview mirror, let’s get back to the results from the ASC23 Student Cluster Competition. In our last articles, we looked at the compet Read more…

At ISC, Sustainable Computing Leaders Discuss HPC’s Energy Crossroads

May 30, 2023

In the wake of SC22 last year, HPCwire wrote that “the conference’s eyes had shifted to carbon emissions and energy intensity” rather than the historical Read more…

Nvidia Announces Four Supercomputers, with Two in Taiwan

May 29, 2023

At the Computex event in Taipei this week, Nvidia announced four new systems equipped with its Grace- and Hopper-generation hardware, including two in Taiwan. T Read more…

Nvidia Announces New ‘1 Exaflops’ AI Supercomputer; Grace-Hopper in ‘Full Production’

May 28, 2023

We in HPC sometimes roll our eyes at the term “AI supercomputer,” but a new system from Nvidia might live up to the moniker: the DGX GH200 AI supercomputer. Read more…

Closing ISC Keynote by Sterling and Suarez Looks Backward and Forward

May 25, 2023

ISC’s closing keynote this year was given jointly by a pair of distinguished HPC leaders, Thomas Sterling of Indiana University and Estela Suarez of Jülich S Read more…

The Grand Challenge of Simulating Nuclear Fusion: An Overview with UKAEA’s Rob Akers

May 25, 2023

As HPC and AI continue to rapidly advance, the alluring vision of nuclear fusion and its endless zero-carbon, low-radioactivity energy is the sparkle in many a Read more…

MareNostrum 5 Hits Speed Bumps; Iconic Chapel to Host Quantum Systems

May 23, 2023

MareNostrum 5, the next-generation supercomputer at the Barcelona Supercomputing Center (BSC) and one of EuroHPC’s flagship pre-exascale systems, has had a di Read more…

ISC Keynote: To Reinvent HPC After Moore’s Law, Follow the Money

May 23, 2023

This year’s International Supercomputing Conference (ISC) kicked off yesterday in Hamburg, Germany, with a keynote from Dan Reed, presidential professor at th Read more…

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

Leading Solution Providers

Contributors

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

ISC 2023 Booth Videos

Cornelis Networks @ ISC23
Dell Technologies @ ISC23
Intel @ ISC23
Lenovo @ ISC23
ISC23 Playlist
  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire