Meet the Exascale Apps

By Gary Johnson

April 12, 2012

In what will be a three-decade span between gigascale and exascale computing, HPC capability will have increased by a factor of one billion, but the apps that are projected to use this enormous increase in capability look pretty much like the gigascale ones. Are we missing opportunities as we push the apex of HPC higher?

Gigascale to Terascale

In February of 1991, the Office of Science and Technology Policy released the first “Blue Book” supplement to the President’s FY 1992 Budget Request for the new High Performance Computing and Communications Program. It was entitled “Grand Challenges: High Performance Computing and Communications” and contained a listing of the computational science and engineering challenges then seen as drivers for federal expenditures on HPC. Figure 2 from that report is reproduced below.

 Petascale to Exascale

In preparation for the current attempt to secure federal funding for exascale computing, the Department of Energy conducted a series of workshops entitled “Scientific Grand Challenges Workshop Series”. While this series only focused on science and engineering areas of importance to DOE’s mission, that mission is broad enough to view the grand challenges discussed there as typical of the applications areas foreseen as drivers for the move to exascale.

With the use of a bit of poetic license to prevent the reader’s eyes from glazing over, the table below attempts to convey the general character to these early 1990s gigascale to terascale applications and the exascale applications considered for the 2018-2025 timeframe (depending on whose guess about the arrival of exascale computing one chooses).

We see that over a span of 28 to 35 years, depending on how you count, the applications list remains substantially the same. A few of the 90s applications have dropped off the list – either through success or loss of interest. A couple of well-established applications: Nuclear Physics and Nuclear Energy Systems have been added in response to renewed interest in nuclear energy. To be sure, the other areas listed – the ones surviving multiple decades – have grown in complexity and broadened in applicability. What seems to be missing is the addition of any fundamentally new applications.

Over the decades since the publication of that first Blue Book, “apexscale” HPC has grown in capability by a factor of 1,000,000. In another decade, when exascale machines occupy the apex, they will be a factor of 1,000,000,000 more capable than those early 90s machines. Certainly, this enormous increase must present the opportunity to do a few fundamentally new things.

Capability Computing Usage Modes

In general, as HPC grows in capability, it can be used in three distinct ways:

  • Do what we’re currently doing, but faster or cheaper;
  • Undertake the logical extension of what we’re currently doing to use additional computing capabilities; or
  • Use the new and vastly more capable resource to do something we hadn’t seriously considered trying before.

Clearly and justifiably, we are using apexscale HPC in the first two ways. But what about the third? Have we run out of new ideas? Certainly not. But getting new apps on the agenda seems to have been either remarkably hard or of surprisingly little interest.

Exascale Readiness

Whether any new application candidate is, from inception, “exascale ready” seems considerably less important than its potential scalability. We are, after all, living in an age of scalable computing. Observe that many of the gigascale apps of the early 90s have readily survived, and thrived on, the transition to petascale and (soon) exascale. Did we coincidentally choose the complete collection of applications with this sort of potential for scalability back then or could there be others lurking in the wings?

Opportunities

Thinking of what we hadn’t thought of is always difficult and fraught with peril (you don’t know what you don’t know). However, the commercial and open science worlds have provided us with a few possibilities.

Big Data

Although several federally-funded applications areas have well-established needs for data crunching (e.g., high-energy physics, bioinformatics, and national security), the current opportunity in “Big Data” comes from the commercial world. Think: Social Data Analysis, Personal Analytics, Biobank, the Quantified Self, 23andMe, Healthrageous, Integrated Personal Omics, MyLifeBits. These are probably just the tip of the big data iceberg.

IBM has already launched Watson, with (beyond Jeopardy) foci on health care and financial services. Cray and Sandia National Laboratories have started a Supercomputing Institute for Learning and Knowledge Systems. NeuStar and the University of Illinois Urbana-Champaign have created a Big Data Research Facility. The federal government is also getting onboard with its recently announced Big Data Initiative. In fact, it’s interesting to note that the “Blue Book” accompanying the President’s FY 2013 budget request is strongly focused on big data and not the grand challenges of earlier blue books.

So, Big Data is probably a “no brainer” for the new applications category. Some of it may not be exascale yet, but there’s lots of room to grow.

Brain in a Box

This new application candidate has been advocated by Henry Markram at the Swiss Federal Institute of Technology in Lausanne (EFPL). Its official title is the Human Brain Project (HBP).

As described in a recent Nature article, it’s “an effort to build a supercomputer simulation that integrates everything known about the human brain, from the structures of ion channels in neural cell membranes up to mechanisms behind conscious decision-making.” Markram’s precursor Blue Brain Project at EFPL estimates that this is an exascale application (see figure below).

IBM is also a player in the activity, with its cognitive computing project called Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE). This project claims that “By reproducing the structure and architecture of the brain—the way its elements receive sensory input, connect to each other, adapt these connections, and transmit motor output—the SyNAPSE project models computing systems that emulate the brain’s computing efficiency, size and power usage without being programmed.”

Thus, some form of simulation of the complete human brain seems like a keeper for our new applications short list.

Global-scale Systems

Under this heading, a couple of systems immediately come to mind: the global energy system and the global social system. Each seems worthy of a modeling effort.

In this vein, the European Commission has recently funded a “Big Science” pilot project, called FutureICT, “to understand and manage complex, global, socially interactive systems, with a focus on sustainability and resilience.” FutureICT intends to accomplish these goals “by developing new scientific approaches and combining these with the best established methods in areas like multi-scale computer modeling, social supercomputing, large-scale data mining and participatory platforms.” Sounds like there’s potential for an exascale application here.

To the best of our knowledge, there is no current effort to simulate the complete global energy system. However, given the critical nature of energy, from resource discovery and recovery, through transportation of energy materials, to production and distribution of energy, and disposition of by-products, it seems like having one or more full-scale, high- fidelity simulation tools on hand might be a good idea. Perhaps this will be part of the FutureICT project.

The Whole Planet

Thanks to a concerted international effort spanning a couple of decades, we now have some pretty good global climate models. This community effort has also set a shining example for “team science.”

Lately, the climate modeling community has begun using the term “Earth systems science,” as more phenomenology is added to the basic coupled ocean-atmosphere simulations. Laudable and valuable as these efforts may be, they still leave most of the planet out of the models. So, maybe we should model the whole planet.

The opportunity for such a whole planet model is made visible when one looks at the imagery of our Blue Marble. One immediately notices how thin the shell of the atmosphere is in comparison to the dimensions of our planet. The Earth’s volumetric mean radius is 6371 km. Current climate models reach about 30 km above the surface. The deepest point any ocean model needs to reach is about 12 km below the surface. So, our current modeling efforts are focused on a shell that is, at best, about 0.66 percent of the Earth’s radius. This shell represents about 1.96 percent of the Earth’s volume and 0.02 percent of its mass.

Note that the sort of whole planet model proposed here represents an extreme example of a multi-physics, multi-scale problem. The relevant temporal and spatial scales range from sub-millisecond molecular interactions to multi-millennia ice sheet models to million cubic kilometer modeling of the ionosphere.

The advantages of a fully integrated whole planet model are readily apparent and include applications for:

  • Disaster management and mitigation
  • Energy exploitation
  • Minerals exploration and recovery
  • Siting of critical facilities (e.g., nuclear power plants and waste repositories)
  • Understanding the impact of climate change on built infrastructure
  • Understanding the interactions among human, ecological and physical systems

The availability of such models would also serve to advance fundamental scientific understanding of our planet and its dynamics. Furthermore, undertaking to build such models would provide researchers in all of the relevant disciplines with a clear context for thinking about their research activities and how they contribute to the overall planet modeling effort.

Since the earth system models already in development will require trans-petascale computing capabilities, it is clear that exascale capability will be a bare minimum requirement for whole planet models.

The idea of building the sort of top-down whole planet model suggested here has also occurred to others. See, for example, the agenda of the Geneva-based International Centre for Earth Simulation (ICES). Furthermore, no discussion of this topic would be complete without paying homage to the ground-breaking efforts of Japan’s Earth Simulator Center.

Thinking outside the box

Making the case for new applications is a game that anyone can play. Here we have attempted to make the point that there may be worthwhile candidates lurking out there, beyond the view of our current exascale effort and its list of drivers.

If you don’t like these examples, please feel free to critique and improve them. If you have additional applications candidates, please make them known. The more frank and constructive discussion we have on this topic, the better and richer the future of HPC will be.

About the author

Gary M. Johnson is the founder of Computational Science Solutions, LLC, whose mission is to develop, advocate, and implement solutions for the global computational science and engineering community.

Dr. Johnson specializes in management of high performance computing, applied mathematics, and computational science research activities; advocacy, development, and management of high performance computing centers; development of national science and technology policy; and creation of education and research programs in computational engineering and science.

He has worked in Academia, Industry and Government. He has held full professorships at Colorado State University and George Mason University, been a researcher at United Technologies Research Center, and worked for the Department of Defense, NASA, and the Department of Energy.

He is a graduate of the U.S. Air Force Academy; holds advanced degrees from Caltech and the von Karman Institute; and has a Ph.D. in applied sciences from the University of Brussels.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new half-petaflops research supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as part Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new half-petaflops research supercomputer, named Genius, at Flemish research university KU Leuven. The system is built Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This