Meet the Exascale Apps

By Gary Johnson

April 12, 2012

In what will be a three-decade span between gigascale and exascale computing, HPC capability will have increased by a factor of one billion, but the apps that are projected to use this enormous increase in capability look pretty much like the gigascale ones. Are we missing opportunities as we push the apex of HPC higher?

Gigascale to Terascale

In February of 1991, the Office of Science and Technology Policy released the first “Blue Book” supplement to the President’s FY 1992 Budget Request for the new High Performance Computing and Communications Program. It was entitled “Grand Challenges: High Performance Computing and Communications” and contained a listing of the computational science and engineering challenges then seen as drivers for federal expenditures on HPC. Figure 2 from that report is reproduced below.

 Petascale to Exascale

In preparation for the current attempt to secure federal funding for exascale computing, the Department of Energy conducted a series of workshops entitled “Scientific Grand Challenges Workshop Series”. While this series only focused on science and engineering areas of importance to DOE’s mission, that mission is broad enough to view the grand challenges discussed there as typical of the applications areas foreseen as drivers for the move to exascale.

With the use of a bit of poetic license to prevent the reader’s eyes from glazing over, the table below attempts to convey the general character to these early 1990s gigascale to terascale applications and the exascale applications considered for the 2018-2025 timeframe (depending on whose guess about the arrival of exascale computing one chooses).

We see that over a span of 28 to 35 years, depending on how you count, the applications list remains substantially the same. A few of the 90s applications have dropped off the list – either through success or loss of interest. A couple of well-established applications: Nuclear Physics and Nuclear Energy Systems have been added in response to renewed interest in nuclear energy. To be sure, the other areas listed – the ones surviving multiple decades – have grown in complexity and broadened in applicability. What seems to be missing is the addition of any fundamentally new applications.

Over the decades since the publication of that first Blue Book, “apexscale” HPC has grown in capability by a factor of 1,000,000. In another decade, when exascale machines occupy the apex, they will be a factor of 1,000,000,000 more capable than those early 90s machines. Certainly, this enormous increase must present the opportunity to do a few fundamentally new things.

Capability Computing Usage Modes

In general, as HPC grows in capability, it can be used in three distinct ways:

  • Do what we’re currently doing, but faster or cheaper;
  • Undertake the logical extension of what we’re currently doing to use additional computing capabilities; or
  • Use the new and vastly more capable resource to do something we hadn’t seriously considered trying before.

Clearly and justifiably, we are using apexscale HPC in the first two ways. But what about the third? Have we run out of new ideas? Certainly not. But getting new apps on the agenda seems to have been either remarkably hard or of surprisingly little interest.

Exascale Readiness

Whether any new application candidate is, from inception, “exascale ready” seems considerably less important than its potential scalability. We are, after all, living in an age of scalable computing. Observe that many of the gigascale apps of the early 90s have readily survived, and thrived on, the transition to petascale and (soon) exascale. Did we coincidentally choose the complete collection of applications with this sort of potential for scalability back then or could there be others lurking in the wings?

Opportunities

Thinking of what we hadn’t thought of is always difficult and fraught with peril (you don’t know what you don’t know). However, the commercial and open science worlds have provided us with a few possibilities.

Big Data

Although several federally-funded applications areas have well-established needs for data crunching (e.g., high-energy physics, bioinformatics, and national security), the current opportunity in “Big Data” comes from the commercial world. Think: Social Data Analysis, Personal Analytics, Biobank, the Quantified Self, 23andMe, Healthrageous, Integrated Personal Omics, MyLifeBits. These are probably just the tip of the big data iceberg.

IBM has already launched Watson, with (beyond Jeopardy) foci on health care and financial services. Cray and Sandia National Laboratories have started a Supercomputing Institute for Learning and Knowledge Systems. NeuStar and the University of Illinois Urbana-Champaign have created a Big Data Research Facility. The federal government is also getting onboard with its recently announced Big Data Initiative. In fact, it’s interesting to note that the “Blue Book” accompanying the President’s FY 2013 budget request is strongly focused on big data and not the grand challenges of earlier blue books.

So, Big Data is probably a “no brainer” for the new applications category. Some of it may not be exascale yet, but there’s lots of room to grow.

Brain in a Box

This new application candidate has been advocated by Henry Markram at the Swiss Federal Institute of Technology in Lausanne (EFPL). Its official title is the Human Brain Project (HBP).

As described in a recent Nature article, it’s “an effort to build a supercomputer simulation that integrates everything known about the human brain, from the structures of ion channels in neural cell membranes up to mechanisms behind conscious decision-making.” Markram’s precursor Blue Brain Project at EFPL estimates that this is an exascale application (see figure below).

IBM is also a player in the activity, with its cognitive computing project called Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE). This project claims that “By reproducing the structure and architecture of the brain—the way its elements receive sensory input, connect to each other, adapt these connections, and transmit motor output—the SyNAPSE project models computing systems that emulate the brain’s computing efficiency, size and power usage without being programmed.”

Thus, some form of simulation of the complete human brain seems like a keeper for our new applications short list.

Global-scale Systems

Under this heading, a couple of systems immediately come to mind: the global energy system and the global social system. Each seems worthy of a modeling effort.

In this vein, the European Commission has recently funded a “Big Science” pilot project, called FutureICT, “to understand and manage complex, global, socially interactive systems, with a focus on sustainability and resilience.” FutureICT intends to accomplish these goals “by developing new scientific approaches and combining these with the best established methods in areas like multi-scale computer modeling, social supercomputing, large-scale data mining and participatory platforms.” Sounds like there’s potential for an exascale application here.

To the best of our knowledge, there is no current effort to simulate the complete global energy system. However, given the critical nature of energy, from resource discovery and recovery, through transportation of energy materials, to production and distribution of energy, and disposition of by-products, it seems like having one or more full-scale, high- fidelity simulation tools on hand might be a good idea. Perhaps this will be part of the FutureICT project.

The Whole Planet

Thanks to a concerted international effort spanning a couple of decades, we now have some pretty good global climate models. This community effort has also set a shining example for “team science.”

Lately, the climate modeling community has begun using the term “Earth systems science,” as more phenomenology is added to the basic coupled ocean-atmosphere simulations. Laudable and valuable as these efforts may be, they still leave most of the planet out of the models. So, maybe we should model the whole planet.

The opportunity for such a whole planet model is made visible when one looks at the imagery of our Blue Marble. One immediately notices how thin the shell of the atmosphere is in comparison to the dimensions of our planet. The Earth’s volumetric mean radius is 6371 km. Current climate models reach about 30 km above the surface. The deepest point any ocean model needs to reach is about 12 km below the surface. So, our current modeling efforts are focused on a shell that is, at best, about 0.66 percent of the Earth’s radius. This shell represents about 1.96 percent of the Earth’s volume and 0.02 percent of its mass.

Note that the sort of whole planet model proposed here represents an extreme example of a multi-physics, multi-scale problem. The relevant temporal and spatial scales range from sub-millisecond molecular interactions to multi-millennia ice sheet models to million cubic kilometer modeling of the ionosphere.

The advantages of a fully integrated whole planet model are readily apparent and include applications for:

  • Disaster management and mitigation
  • Energy exploitation
  • Minerals exploration and recovery
  • Siting of critical facilities (e.g., nuclear power plants and waste repositories)
  • Understanding the impact of climate change on built infrastructure
  • Understanding the interactions among human, ecological and physical systems

The availability of such models would also serve to advance fundamental scientific understanding of our planet and its dynamics. Furthermore, undertaking to build such models would provide researchers in all of the relevant disciplines with a clear context for thinking about their research activities and how they contribute to the overall planet modeling effort.

Since the earth system models already in development will require trans-petascale computing capabilities, it is clear that exascale capability will be a bare minimum requirement for whole planet models.

The idea of building the sort of top-down whole planet model suggested here has also occurred to others. See, for example, the agenda of the Geneva-based International Centre for Earth Simulation (ICES). Furthermore, no discussion of this topic would be complete without paying homage to the ground-breaking efforts of Japan’s Earth Simulator Center.

Thinking outside the box

Making the case for new applications is a game that anyone can play. Here we have attempted to make the point that there may be worthwhile candidates lurking out there, beyond the view of our current exascale effort and its list of drivers.

If you don’t like these examples, please feel free to critique and improve them. If you have additional applications candidates, please make them known. The more frank and constructive discussion we have on this topic, the better and richer the future of HPC will be.

About the author

Gary M. Johnson is the founder of Computational Science Solutions, LLC, whose mission is to develop, advocate, and implement solutions for the global computational science and engineering community.

Dr. Johnson specializes in management of high performance computing, applied mathematics, and computational science research activities; advocacy, development, and management of high performance computing centers; development of national science and technology policy; and creation of education and research programs in computational engineering and science.

He has worked in Academia, Industry and Government. He has held full professorships at Colorado State University and George Mason University, been a researcher at United Technologies Research Center, and worked for the Department of Defense, NASA, and the Department of Energy.

He is a graduate of the U.S. Air Force Academy; holds advanced degrees from Caltech and the von Karman Institute; and has a Ph.D. in applied sciences from the University of Brussels.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Ohio Supercomputing Center Dedicates ‘Owens’ Cluster

March 29, 2017

In a dedication ceremony held earlier today (March 29), officials from Ohio Supercomputing Center (OSC) along with state representatives gathered to celebrate the launch of OSC’s newest cluster: Read more…

By Tiffany Trader

EU Ratchets up the Race to Exascale Computing

March 29, 2017

The race to expand HPC infrastructure, including exascale machines, to advance national and regional interests ratcheted up a notch yesterday with announcement that seven European countries – Read more…

By John Russell

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging the Power of Big Data to Improve Customer Satisfaction & Brand Loyalty

In the dynamic world of retail, retailers must find ways to recognize and effectively respond to shopping behaviors, patterns, and trends in order to succeed. Read more…

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

Data-Hungry Algorithms and the Thirst for AI

March 29, 2017

At Tabor Communications’ Leverage Big Data + EnterpriseHPC Summit in Florida last week, esteemed HPC professional Jay Boisseau, chief HPC technology strategist at Dell EMC, engaged the audience with his presentation, “Big Computing, Big Data, Big Trends, Big Results.” Read more…

By Tiffany Trader

Bill Gropp – Pursuing the Next Big Thing at NCSA

March 28, 2017

About eight months ago Bill Gropp was elevated to acting director of the National Center for Supercomputing Applications (NCSA). Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This