Grid Fights Neurological Disease

By Tiffany Trader

April 16, 2012

Grid computing, the forerunner to today’s more popular cloud-based approach to IT, is being used to create advances in the biomedical field. A pan-European grid computing infrastructure, known as the neuGRID project, was established in 2008 to advance new treatments for neurological diseases such as Alzheimer’s. The goal was to become the “Google for Brain Imaging,” i.e., to provide “a centrally-managed, easy-to-use set of image analysis tools with which scientists can answer complex neuroscientific questions.”

neuGRID logoThe project ran from February 1, 2008, to January 31, 2011, and enabled the processing of thousands of brain scans in less than two weeks instead of five years normally required with traditional methods. The condensed discovery process means that researchers can detect early traces of Alzheimer’s, which should lead to better prognoses.

According to the project website:

The aim of neuGRID was to build a new, user-friendly Grid-based research e-Infrastructure based on existing e-Infrastructures by developing a set of generalised and reusable medical services in order to enable the European neuroscience community to carry out research required for the study of degenerative brain diseases.

Researchers from seven countries worked for three years to develop the infrastructure using EUR 2.8 million in funding from the European Commission. The initial prototype system was comprised of five distributed nodes of 100 cores (CPUs) each, connected with grid middleware and accessible via the Internet with a user-friendly interface. Workability tests were run using datasets of images from the Alzheimer’s Disease Neuroimaging Initiative (ANDI), the largest public database of MRI brain scans documenting the progression of Alzheimer’s disease and mild cognitive impairment. The role of neuGRID was to connect the imaging data with facilities and services for computationally-intensive data analyses.

Principal Investigator Giovanni Frisoni, a neurologist and the deputy scientific director of IRCCS Fatebenefratelli, the Italian National Centre for Alzheimer’s and Mental Diseases, commented on the impetus for the project:

“neuGRID was launched to address a very real need. Neurology departments in most hospitals do not have quick and easy access to sophisticated MRI analysis resources. They would have to send researchers to other labs every time they needed to process a scan. So we thought, why not bring the resources to the researchers rather than sending the researchers to the resources?”

The results were truly remarkable, as explained by Dr. Frisoni:

“In neuGRID we have been able to complete the largest computational challenge ever attempted in neuroscience: we extracted 6,500 MRI scans of patients with different degrees of cognitive impairment and analysed them in two weeks, on an ordinary computer it would have taken five years!”

Going forward, neuGRID will live on in the form of a spin-off project, called neuGRID for You (N4U), which is adding high performance computing (HPC) and cloud computing resources to the original grid infrastructure. With EUR 3.5 million in European Commission funding, N4U is set to become a virtual laboratory for neuroscientists by expanding the user services, algorithm pipelines and datasets.

“In neuGRID we built the grid infrastructure, addressing technical challenges such as the interoperability of core computing resources and ensuring the scalability of the architecture. In N4U we will focus on the user-facing side of the infrastructure, particularly the services and tools available to researchers,” Dr. Frisoni says. “We want to try to make using the infrastructure for research as simple and easy as possible. The learning curve should not be much more difficult than learning to use an iPhone!”

An excerpt from the final report highlights the “business case” for employing the grid/cloud model in research:

During its implementation, neuGRID has pioneered the use of distributed computing in biomedical research. The successful data challenge and success of the user training sessions have proved the validity of the neuGRID concept, justifying the effort of populating the infrastructure with services that neuroscientists need for their daily research activity. It illustrates that a new way of doing science in computational neuroscience, where data algorithms and CPUs are de-coupled from the physical location of the neuroscience lab and externalised to the grid, is realistic and feasible. While it is quite natural to believe that if cloud computing (i.e. outsourcing data, applications, and computational resources) is working for corporate business, it might also work for research, providing empirical proof that this is the case if of course at the same time mandatory and greatly persuasive.

neuGRID’s original mandate was to enable neuroscientists to quickly and efficiently analyse MRI scans of the brains of patients with Alzheimer’s disease. Not only has the team been successful in that endeavor, but now their work has created a use case for grid computing that can be applied to other neurological disorders and additional areas of medicine. The architecture is “such that generic medical services can be flexibly adapted to be interfaced to others, specific to areas outside Alzheimer’s and the neurosciences,” the website explains.

Neelie Kroes, European Commission Vice-President for the Digital Agenda, said: “Today’s e-infrastructures enable us to tackle an unprecedented amount of available data and an increasing complexity of modern experiments. The neuGRID initiative allows scientists in the smallest laboratories of the most remote areas to access data treasures and help patients suffering from dementia. It is up to the scientific community to make the most of this remarkable instrument, to cooperate and break traditional barriers, thus bringing us one decisive step closer to doing away with Alzheimer’s and other brain degenerative diseases.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This