Latest FPGAs Show Big Gains in Floating Point Performance

By Nicole Hemsoth

April 16, 2012

Dave Strenski, Cray Inc; Chidamber Kulkarni, Xilinx Inc; John Cappello, Optimal Design, Inc.; and Prasanna Sundararajan, Xilinx Inc.


This is the fourth in a series of HPCwire articles comparing the theoretical floating point performance of Field Programmable Gate Arrays (FPGA) to microprocessors. As shown in the last article, the performance gap continues to expand between these two classes of devices. Comparing theoretical peaks for 64-bit floating point arithmetic, the current generation of Xilinx’s Virtex-7 FPGAs is about 4.2 times faster than a 16-core microprocessor. This is up from a factor of 2.9X as reported in 2010.

This article also includes some new empirical validation of the theoretical calculation by implementing a simple single-stream double-square function on two FPGAs using AutoESL, a C/C++ synthesis tool. That tool was able to implement a design within 2 percent of the theoretical predicted performance. The calculations were also supplemented by the hardware description language (HDL) implementation of a matrix multiplication (DGEMM) on one of the Virtex-7 FPGA devices.

Background

High performance computing applications have hit the practical limits of clock speeds for microprocessors. To increase the performance of a computing device, parallelism must be exploited so that more operations can be performed per clock cycle. For instance, multiple computing cores are being placed within the same microprocessor device. This keeps the programming model simple, since the same set of instructions can be spread across the multiple cores. The drawback is that a lot of circuitry is replicated that might not add performance. The Graphical processing unit (GPU) addresses this issue by providing more functional units sharing the same control logic.

FPGAs push this idea of parallelism to the limit via dynamic reconfiguration of the entire device, allowing the user to place only the functions and controls that are need for the calculation. The down side of this approach is that the complexity of the design must be handled by the programmer or hidden in FPGA design tools or pre-packaged libraries.

This design freedom on FPGAs also makes it difficult to gauge what the devices are capable of for 64-bit floating point performance. For this reason the first HPCwire article was written to describe one method to estimate the peak floating point performance of FPGAs. The concept was simple. Figure out all the ways floating point function units can be placed on a device and multiply it by the clock frequency from the data sheets. This method was further refined in a whitepaper published by Altera.

Since the FPGA is a blank sheet of transistors, some portion needs to be reserved for interfaces like memory controllers. In addition, FPGA design tools cannot make 100 percent use of the FPGA device, so some portion of the device area is needed to factor in this constraint. Lastly, not all the data paths between the floating point operators will be able to meet timing when packing a device close to its resource limits, so the data sheet clock frequency needs to be derated. Since different engineers might want to derate the FPGA devices in different ways for a predicted performance, the articles have been presenting both a “peak” floating point performance number that simply pack the FPGA with functions units and a derated “predicted” performance.

Soft floating point operators allow programmers to implement adders and multipliers in multiple ways and in any ratio needed. In contrast, the microprocessor has a fixed number of floating point function units, so the ratio of adders to multipliers is fixed. If a calculation only needs to perform additions, half the functional units (i.e. the multipliers) will become idle. This leads to an ambiguity regarding a device’s “peak” performance. Is it for an even ratio of adders to multipliers or for any ratio?

For this reason, the FPGA performance has been evaluated for both scenarios: an even ratio for direct comparison with microprocessors, and any ratio for a look at the optimal performance combination. The floating point operators supplied for these devices, come in 64-bit, 32-bit, and 24-bit versions. While it is very rare for a researcher in HPC to use 24-bit logic, these results show another dimension of the flexibility of FPGAs. If the calculations can make use of 24-bits, there is additional performance to be gained.

 

Calculating Peak Performance

The peak performance calculation of a Virtex-7 FPGA starts with collecting its available resources as reported from the data sheet, ds180. For example, the V7-2000T contains 1.2 million Look-up Tables (LUT), 2.4 million Flip-Flops (FF) and 2160 Digital Signal Processing (DSP) slices.

Next, the resource requirements for building functional units such as logic adders, full adders, logic multipliers, medium multipliers, full multipliers, and max multipliers are collected from the LogiCORE IP Floating point Operator v6.0 data sheet, ds816. Some operators use more DSPs to run faster and use less logic.

With this data, it is just a matter of picking a configuration, adding up the LUTs, FFs, and DSPs needed, and seeing if they will fit on the device of interest. A program was written to systematically try every possible combination of the six types of floating point operators and multiplying them by the appropriate clock frequency, calculated gigaflops, then recording the best for each device. For the 64-bit floating point operators, the program was able to do a fully exhaustive search of every combination of operators. Because the 32-bit and especially the 24-bit operators are quite a bit smaller, many more will fit on a given device and hence the search space gets very large. For these precisions, a “step” function was used to regularly skip some configurations and do a semi-exhaustive search.  This makes the performance predictions for the 32-bit and 24-bit performance more conservative.

Using this method, the best possible 64-bit floating point peak performance was calculated to be 670.99 gigaflops on the V7-2000T using 1469 logic adders and 196 max multipliers running at a 403 MHz clock. Further constraining the configuration to only look at adder/multipliers configurations with a one-to-one ratio drops the performance of the V7-2000T to 345.35 gigaflops. That configuration used 543 logic adders, 2 full multipliers, 237 medium multipliers and 304 logic multipliers running at a 318 MHz clock.

The floating point performance for the reference microprocessor is calculated by multiplying the number of floating point functions units on each core by the number of cores and by the clock frequency. For instance, the calculation for a 16-core device would be four 64-bit floating point ops per clock times 16 cores times 2.5 GHz, which comes to a theoretical peak of 160 gigaflops. Although clock frequency typically drops as the number of cores per microprocessor goes up, this article series has been using a normalized value of 2.5 GHz clock frequency for all microprocessor flavors for straightforward comparisons.

Calculating Predicted Performance

To calculate a more realistic “predicted” performance, some logic needs to be set aside for an interface and for routing the design. Xilinx recommended removing 20,000 LUTs and FFs for an interface and further reducing that by another 15 percent for routing to give a more realistic performance calculation. This is one of the reasons why the gap between the FPGAs and microprocessors has been growing. As FPGAs get bigger a smaller percentage of resources are need for the interface logic. Clock frequency is also reduced by 15 percent to simulate the longer data-paths in the design not meeting timing.

Applying those modifications, the predicted 64-bit performance of the highest peak V7-2000T performance drops 38 percent, from 670.99 to 484.02 gigaflops. It is interesting that the best predicted 64-bit configuration is still very similar to the peak performance configuration, using the same 196 max multipliers, but dropping the number of logic adders from 1469 to 1217.

The best one-to-one adder/multiplier ratio predicted 64-bit performance also drops 33 percent from 345.35 to 258.95 gigaflops. Again, the configuration looks very similar with the number of logic adders reduced due to the reduction of logic slices. This configuration is 479 logic adders, 3 full multipliers, 236 medium multipliers, and 240 logic multipliers running at a 270 MHz clock. For the microprocessor, its predicted performance is calculated by derating its peak performance by 85 percent.

While not practical for most HPC applications, the flexibility of having 24-bit floating point operators could yield over 1.6 teraflops on the V7-2000T.

One other aspect of the floating point performance that has yet to be explored fully is performing fixed point arithmetic within the FPGA and floating the results at the end of the calculations. At the lowest level, any floating point calculation involves a series of binary operations. Using floating point operators, the results are rounded after every calculation. This rounding takes up logic that could be used for more operators.

What if instead of rounding after each operation, the results was allowed to grow in bit-width and only floated at the very end? This would yield a more exact answer since there is no rounding and would use less logic.

Validating Predicted Performance Using a Comparable Design Implemented in AutoESL      

To compare the validity of the calculated predicted performance, AutoESL was used to implement a simple design on two FPGA devices. AutoESL allows a programmer to write a high level description of the design in a standard programming language, which is then automatically synthesized into HDL. The HDL can be implemented into a design for an FPGA.

Using this tool, a double-square function was implemented on the X690T and X980T devices. The double-square function is a single-stream function that ties an arbitrary number of adders and multipliers together in one pipeline. An initial value is split, and passed as the two inputs to an adder. The output from the adder is then split and fed as the two inputs to a multiplier. The pipeline can be arbitrarily long and made up of an arbitrary number of adders and multipliers. With AutoESL, many combinations of the number and type of operators were tried to maximize performance for the target device.

This experiment created a double-square implementation for the X690T and X980T devices that were within about 2 percent of the predicted 64-bit floating point performance and validated the calculated predicted performance. For the X690T, AutoESL got timing closure on a 64-bit design using 390 full adders and 180 full multipliers running at 387 MHz for 220.59 gigaflops. The best predicted 64-bit performance was 224.03 gigaflops using 327 logic adders and 327 max multipliers running at a 342 MHz clock. For the X980T device, AutoESL achieved 282.5 gigaflops, where as the program calculated a 64-bit predicted performance of 289.45 gigaflops.

For these two data points the AutoESL designs shows that the predicted performance calculations can be obtained on simple algorithms and functions. The double-square function, though a simple algorithm was comparable to illustrate the validity of the upper limit of the predicted performance on a device.

Comparing Predicted Performance against the Results of a Typical HPC Algorithm

To demonstrate the performance limits of an FPGA when designing a complex design, a DGEMM algorithm was implemented on the X690T. DGEMM (“Double precision General Matrix Multiply”) is a standard routine from BLAS (“Basic Library of Algebra Subprograms”) and is commonly used for benchmarking HPC machines. The matrix multiply, a workhorse function for many scientific applications, happens to reap tremendous performance gains when accelerated on hardware within an HPC environment. Thus, the algorithm is apropos for this demonstration.

The FPGA fabric’s inherent parallelism allows the matrix multiply algorithm to be implemented using a systolic array of MACs (“Multiply-ACcumulate”) designed so that each MAC can calculate a continuous stream of dot products simultaneously. After analyzing the device specifications and going through a series of dry runs with smaller arrays, a 12×12 array clocked at 500 MHz could be attainable with reasonable effort. This architecture is shown in the figure below.

Several techniques had to be employed to maintain systolic operation (and hence, maximum performance) of the array throughout the algorithm’s execution, such as maximizing DDR3 efficiency, employing an innovative scheme for handling heavily-pipelined accumulators, using embedded RAM blocks as cache, and adopting a data re-use strategy while uploading matrix data from memory.

After carrying out an efficient floor planning strategy (a must for architecture of this complexity to meet 500 MHz), timing closure was met. The overall performance (number of MACs x 2 x frequency) measured out to 144 gigaflops, which works out to about 64 percent of the predicted limit of 224.03 gigaflops on the X690T.

There are opportunities for pushing this performance even higher. For instance, it is feasible that another row and column can be added and still achieve 500 MHz, resulting in a performance of 169 gigaflops, or 75 percent of the theoretical limit. Approaching it from a different angle, it’s possible to condense the arrays even further to create a 15×15 array, albeit at the sacrifice of clock frequency. In such a scenario, a 15×15 array clocked at 400 MHz would reach 180 gigaflops, or 80% of the predicted performance limit.

Expanding the Niche of FPGAs in HPC

The HPC computing landscape is moving towards heterogeneous computing using multiple threads internally on each computing device and tightly coupling thousands of devices together into large systems. Both manycore microprocessors and GPU fit well into this architecture.

FPGAs too can play well in this environment. They have the computing performance needed to compliment microprocessors, they have more flexibility to maximize the use of the given transistors, and they have the advantage of running at a lower clock frequency to lower their power requirements. Today FPGAs are used in some bioinformatics and financial applications. As researchers and companies improve the programmability of FPGAs with tools like AutoESL and pre-programmed libraries, the HPC community will find more uses for these accelerators.

Related Articles

FPGA Floating Point Performance

Revaluating FPGAs for 64-bit Floating-Point Calculations

The Expanding Floating-Point Performance Gap Between FPGAs and Microprocessors

 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scientists Conduct First Quantum Simulation of Atomic Nucleus

May 23, 2018

OAK RIDGE, Tenn., May 23, 2018—Scientists at the Department of Energy’s Oak Ridge National Laboratory are the first to successfully simulate an atomic nucleus using a quantum computer. The results, published in Ph Read more…

By Rachel Harken, ORNL

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing Read more…

By John Russell

Intel, Micro Debut Quad-Level Cell NAND Flash

May 22, 2018

Chipmakers continue to gear designs toward AI and other demanding cloud workloads that take advantage of datacenter flash storage capacity. To that end, memory specialist Micron Technology Inc. began shipping compact sol Read more…

By George Leopold

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combined peak computing capacity, the new systems will extend the a Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This