A New Breed of Heterogeneous Computing

By Michael Feldman

April 18, 2012

With the introduction of add-on accelerators like GPUs, Intel’s upcoming MIC chip, and, to a lesser extent, FPGAs, the foundation of high performance computing is undergoing somewhat of a revolution. But an emerging variant of this heterogenous computing approach may upend the current accelerator model in the not-too-distant future. And it’s already begun in the mobile space.

In October 2011, ARM announced their “big.LITTLE” design, a chip architecture than integrates large, performant ARM cores with small, power-efficient ones. The goal of this approach is to minimize power draw in order to extend the battery life of devices like smartphones and tablets.

The way it works is by mapping an application to the optimal cores based on performance demands and power availability. For mobile devices, big cores would be used for performance-demanding tasks like navigation and gaming, and the smaller cores for the OS and simpler tasks like social media apps. But when the battery runs low, the software can shunt everything to the low power cores in order the keep the device operational. ARM is claiming that battery life can be extended by as much as 70 percent by migrating tasks intelligently.

ARM’s first incarnation of big.LITTLE pairs its large Cortex-A15 design with the smaller Cortex-A7, along with glue technology to provide cache and I/O coherency between the two sets of cores. Companies like Samsung, Freescale, and Texas Instruments, among others, are already signing up.

ARM didn’t invent the big core/little core concept though. This model has been kicked around in the research community for nearly a decade. One of the first papers on the subject was written in 2003 by Rakesh Kumar, along with colleagues at UCSD and HP Labs. He proposed a single-ISA heterogenous multicore design, but in this case based on the Alpha microprocessors, a CPU line that, at the time, was being targeted to high-end workstations and servers.

He found that a chip with four different Alpha core microarchitectures had the potential to “increase energy efficiency by a factor of three… without dramatic losses in performance.” He also discovered that most of these gains would be possible with as little as two types of cores.

In a recent conversation with Kumar, he expressed the notion that the time may be ripe for single-ISA heterogeneous chips to find a home in the server arena, even in high performance computing. The driver, once again, is power, or the lack thereof. As server farms and supercomputers expand in size, electricity usage has become a limiting factor. Whether you’re scaling up or scaling out, everyone is now focused on more energy-efficient computers.

“The key insight was that even if you map an application to a little core, it’s not going to perform much worse than running it on a big core,” said Kumar, referring to his earlier research. “But you can save many factors of power.”

The problem with big powerful CPUs like the Xeon, Opteron, and Power is now well known. Although Moore’ Law is still working to expand transistor budgets at a good clip, clock frequencies are stagnant. That means performance and, especially, performance-per-watt are increasing more slowly. For these high-end server chips, essentially you have to spend four units of power to deliver one unit of performance on a per core basis.

That’s a result of the superscalar nature of these big-core microarchitectures, which feature a lot of instruction level parallelism (ILP) and deep pipelines. Such a design reduces execution latency, but at a hefty price in wattage. As Kumar explains it, “It takes a lot of power and a lot of [die] area to squeeze that last 5 to 10 percent of performance.”

The implication is to just switch to smaller, power-efficient cores, with simpler pipelines and less ILP. If you can parallelize an application across many smaller, simpler cores, you get the best of both worlds: better throughput and higher energy efficiency. The problem is that for many applications, decent performance is contingent upon single-threaded performance as well. That has led to the adoption of the types of accelerator-based computing platforms mentioned at the beginning of this article, which pairs a serial CPU chip with a throughput coprocessor.

What the big/little model brings to the table is having both types of cores on the same die. And perhaps more importantly, unlike the CPU-GPU integration that AMD is doing with their Fusion chips and what NVIDIA is planning to do with their “Project Denver” platform, the big/little model consolidates on a homogeneous instruction set.

That has a number of advantages, one of which is easier software development. With a common ISA, there is no need for a complex toolchain with multiple compilers, runtimes, libraries, and debuggers that are needed to deal with two sets of architectures. For supercomputing-type applications though, writing the application is likely to remain challenging, inasmuch as the developer still has to parallelize the code as well as explicitly map the serial work and throughput work to the appropriate cores. Unlike with mobile computing, for HPC, assigning tasks to cores would be more static, since maximizing throughput is the overriding goal.

But where performance has to be compromised because of power or resource constraints, a single ISA chip is a huge advantage. So at run-time, application threads can migrate across the different microarchitectures, as needed, to optimize for throughput, power or both. And since the cores share cache and memory, suspending a thread on one core and resuming it on another is a relatively quick and painless operation.

So, for example, a render server farm equipped with big/little CPUs could shuffle application threads to faster or slower cores depending up the workload mix, available processor resources, and the turnaround time required. If a service level agreement (SLA) was in effect that allowed the rendering job to meet its deadline without maxing out on the big cores, the server farm could save on its electricity bill by utilizing more of the little cores.

It should be noted that power savings can also be achieved by varying a microprocessor’s power supply voltage and clock frequency, otherwise know as voltage/frequency scaling. But as transistor geometries shrink, this technique tends to yield diminishing returns. And as even Intel has concluded, big/little cores — Intel calls them asymmetric cores — seem to deliver the best results.

The most likely architectures to adopt the big/little paradigm over the next few years are x86 and ARM. As mentioned before ARM big.LITTLE implementations are already in the works for mobile computing, but with the unveiling of the 64-bit ARM architecture last year, and with companies like HP delving into ARM-based gear for the datacenter, big/little implementations of ARM servers could appear as early as the middle of this decade.

We may see x86-based big/little server chips even sooner. Intel, in particular, is in prime position to take advantage of this technology. For one thing, the chipmaker is the best in the business at transistor shrinking, which is an important element if you’re interested in populating a die with a useful number of big and little cores. It also has a huge stable of x86 cores designs, from the Atom chip all the way up to the Xeon.

Also, since Intel has little in the way of GPU IP that can be used for computing, the company is most likely to rely on its x86 legacy for throughput cores. For example, it’s not too hard to imagine Intel’s big-core Xeon paired up with its little-core MIC chip in a future SoC geared for HPC duty. The same model, but with a different mix of x86 microarchitectures, could also be used to build more generic enterprise server processors, not to mention its own mobile chips.

Whether Intel intends to go down this path or not remains to be seen. But a recent patent the company filed regarding mixing asymmetric x86 cores in a processor suggests the chipmaker has indeed given serious thought to big/little products. And since both AMD and NVIDIA are pursing their own heterogeneous SoCs, which by the way could also incorporated this technology, Intel is not likely cede any advantage to its competitors.

The big/little approach won’t be a panacea for energy-efficient computing, but it looks like one of the most promising approaches, at least at the level of the CPU. The fact that it incorporates the advantages of a heterogeneous architecture, but with a simpler model, has much to recommend it. And while big/little CPUs may be seen as somewhat of a threat to GPU computing, it can also be viewed as a complementary technology. What is certain is that the days of one-size-fits-all architectures are coming to a close.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's latest weapon in the AI battle with GPU maker Nvidia and clou Read more…

ISC 2024 Student Cluster Competition

May 16, 2024

The 2024 ISC 2024 competition welcomed 19 virtual (remote) and eight in-person teams. The in-person teams participated in the conference venue and, while the virtual teams competed using the Bridges-2 supercomputers at t Read more…

Grace Hopper Gets Busy with Science 

May 16, 2024

Nvidia’s new Grace Hopper Superchip (GH200) processor has landed in nine new worldwide systems. The GH200 is a recently announced chip from Nvidia that eliminates the PCI bus from the CPU/GPU communications pathway.  Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of the last panels at ISC 2024 — the discussion was fascinat Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can uncover patterns, generate insights, and make predictions that Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top500 list of the fastest supercomputers in the world. At s Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire