A New Breed of Heterogeneous Computing

By Michael Feldman

April 18, 2012

With the introduction of add-on accelerators like GPUs, Intel’s upcoming MIC chip, and, to a lesser extent, FPGAs, the foundation of high performance computing is undergoing somewhat of a revolution. But an emerging variant of this heterogenous computing approach may upend the current accelerator model in the not-too-distant future. And it’s already begun in the mobile space.

In October 2011, ARM announced their “big.LITTLE” design, a chip architecture than integrates large, performant ARM cores with small, power-efficient ones. The goal of this approach is to minimize power draw in order to extend the battery life of devices like smartphones and tablets.

The way it works is by mapping an application to the optimal cores based on performance demands and power availability. For mobile devices, big cores would be used for performance-demanding tasks like navigation and gaming, and the smaller cores for the OS and simpler tasks like social media apps. But when the battery runs low, the software can shunt everything to the low power cores in order the keep the device operational. ARM is claiming that battery life can be extended by as much as 70 percent by migrating tasks intelligently.

ARM’s first incarnation of big.LITTLE pairs its large Cortex-A15 design with the smaller Cortex-A7, along with glue technology to provide cache and I/O coherency between the two sets of cores. Companies like Samsung, Freescale, and Texas Instruments, among others, are already signing up.

ARM didn’t invent the big core/little core concept though. This model has been kicked around in the research community for nearly a decade. One of the first papers on the subject was written in 2003 by Rakesh Kumar, along with colleagues at UCSD and HP Labs. He proposed a single-ISA heterogenous multicore design, but in this case based on the Alpha microprocessors, a CPU line that, at the time, was being targeted to high-end workstations and servers.

He found that a chip with four different Alpha core microarchitectures had the potential to “increase energy efficiency by a factor of three… without dramatic losses in performance.” He also discovered that most of these gains would be possible with as little as two types of cores.

In a recent conversation with Kumar, he expressed the notion that the time may be ripe for single-ISA heterogeneous chips to find a home in the server arena, even in high performance computing. The driver, once again, is power, or the lack thereof. As server farms and supercomputers expand in size, electricity usage has become a limiting factor. Whether you’re scaling up or scaling out, everyone is now focused on more energy-efficient computers.

“The key insight was that even if you map an application to a little core, it’s not going to perform much worse than running it on a big core,” said Kumar, referring to his earlier research. “But you can save many factors of power.”

The problem with big powerful CPUs like the Xeon, Opteron, and Power is now well known. Although Moore’ Law is still working to expand transistor budgets at a good clip, clock frequencies are stagnant. That means performance and, especially, performance-per-watt are increasing more slowly. For these high-end server chips, essentially you have to spend four units of power to deliver one unit of performance on a per core basis.

That’s a result of the superscalar nature of these big-core microarchitectures, which feature a lot of instruction level parallelism (ILP) and deep pipelines. Such a design reduces execution latency, but at a hefty price in wattage. As Kumar explains it, “It takes a lot of power and a lot of [die] area to squeeze that last 5 to 10 percent of performance.”

The implication is to just switch to smaller, power-efficient cores, with simpler pipelines and less ILP. If you can parallelize an application across many smaller, simpler cores, you get the best of both worlds: better throughput and higher energy efficiency. The problem is that for many applications, decent performance is contingent upon single-threaded performance as well. That has led to the adoption of the types of accelerator-based computing platforms mentioned at the beginning of this article, which pairs a serial CPU chip with a throughput coprocessor.

What the big/little model brings to the table is having both types of cores on the same die. And perhaps more importantly, unlike the CPU-GPU integration that AMD is doing with their Fusion chips and what NVIDIA is planning to do with their “Project Denver” platform, the big/little model consolidates on a homogeneous instruction set.

That has a number of advantages, one of which is easier software development. With a common ISA, there is no need for a complex toolchain with multiple compilers, runtimes, libraries, and debuggers that are needed to deal with two sets of architectures. For supercomputing-type applications though, writing the application is likely to remain challenging, inasmuch as the developer still has to parallelize the code as well as explicitly map the serial work and throughput work to the appropriate cores. Unlike with mobile computing, for HPC, assigning tasks to cores would be more static, since maximizing throughput is the overriding goal.

But where performance has to be compromised because of power or resource constraints, a single ISA chip is a huge advantage. So at run-time, application threads can migrate across the different microarchitectures, as needed, to optimize for throughput, power or both. And since the cores share cache and memory, suspending a thread on one core and resuming it on another is a relatively quick and painless operation.

So, for example, a render server farm equipped with big/little CPUs could shuffle application threads to faster or slower cores depending up the workload mix, available processor resources, and the turnaround time required. If a service level agreement (SLA) was in effect that allowed the rendering job to meet its deadline without maxing out on the big cores, the server farm could save on its electricity bill by utilizing more of the little cores.

It should be noted that power savings can also be achieved by varying a microprocessor’s power supply voltage and clock frequency, otherwise know as voltage/frequency scaling. But as transistor geometries shrink, this technique tends to yield diminishing returns. And as even Intel has concluded, big/little cores — Intel calls them asymmetric cores — seem to deliver the best results.

The most likely architectures to adopt the big/little paradigm over the next few years are x86 and ARM. As mentioned before ARM big.LITTLE implementations are already in the works for mobile computing, but with the unveiling of the 64-bit ARM architecture last year, and with companies like HP delving into ARM-based gear for the datacenter, big/little implementations of ARM servers could appear as early as the middle of this decade.

We may see x86-based big/little server chips even sooner. Intel, in particular, is in prime position to take advantage of this technology. For one thing, the chipmaker is the best in the business at transistor shrinking, which is an important element if you’re interested in populating a die with a useful number of big and little cores. It also has a huge stable of x86 cores designs, from the Atom chip all the way up to the Xeon.

Also, since Intel has little in the way of GPU IP that can be used for computing, the company is most likely to rely on its x86 legacy for throughput cores. For example, it’s not too hard to imagine Intel’s big-core Xeon paired up with its little-core MIC chip in a future SoC geared for HPC duty. The same model, but with a different mix of x86 microarchitectures, could also be used to build more generic enterprise server processors, not to mention its own mobile chips.

Whether Intel intends to go down this path or not remains to be seen. But a recent patent the company filed regarding mixing asymmetric x86 cores in a processor suggests the chipmaker has indeed given serious thought to big/little products. And since both AMD and NVIDIA are pursing their own heterogeneous SoCs, which by the way could also incorporated this technology, Intel is not likely cede any advantage to its competitors.

The big/little approach won’t be a panacea for energy-efficient computing, but it looks like one of the most promising approaches, at least at the level of the CPU. The fact that it incorporates the advantages of a heterogeneous architecture, but with a simpler model, has much to recommend it. And while big/little CPUs may be seen as somewhat of a threat to GPU computing, it can also be viewed as a complementary technology. What is certain is that the days of one-size-fits-all architectures are coming to a close.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian and American Scientists Achieve 50% Increase in Data Transmission Speed

September 20, 2018

As high-performance computing becomes increasingly data-intensive and the demand for shorter turnaround times grows, data transfer speed becomes an ever more important bottleneck. Now, in an article published in IEEE Tra Read more…

By Oliver Peckham

IBM to Brand Rescale’s HPC-in-Cloud Platform

September 20, 2018

HPC (or big compute)-in-the-cloud platform provider Rescale has formalized the work it’s been doing in partnership with public cloud vendors by announcing its Powered by Rescale program – with IBM as its first named Read more…

By Doug Black

Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements i Read more…

By Wolfgang Gentzsch

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Clouds Over the Ocean – a Healthcare Perspective

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Read more…

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Gordon Bell Prize used Summit in their work. That’s impres Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This