A New Breed of Heterogeneous Computing

By Michael Feldman

April 18, 2012

With the introduction of add-on accelerators like GPUs, Intel’s upcoming MIC chip, and, to a lesser extent, FPGAs, the foundation of high performance computing is undergoing somewhat of a revolution. But an emerging variant of this heterogenous computing approach may upend the current accelerator model in the not-too-distant future. And it’s already begun in the mobile space.

In October 2011, ARM announced their “big.LITTLE” design, a chip architecture than integrates large, performant ARM cores with small, power-efficient ones. The goal of this approach is to minimize power draw in order to extend the battery life of devices like smartphones and tablets.

The way it works is by mapping an application to the optimal cores based on performance demands and power availability. For mobile devices, big cores would be used for performance-demanding tasks like navigation and gaming, and the smaller cores for the OS and simpler tasks like social media apps. But when the battery runs low, the software can shunt everything to the low power cores in order the keep the device operational. ARM is claiming that battery life can be extended by as much as 70 percent by migrating tasks intelligently.

ARM’s first incarnation of big.LITTLE pairs its large Cortex-A15 design with the smaller Cortex-A7, along with glue technology to provide cache and I/O coherency between the two sets of cores. Companies like Samsung, Freescale, and Texas Instruments, among others, are already signing up.

ARM didn’t invent the big core/little core concept though. This model has been kicked around in the research community for nearly a decade. One of the first papers on the subject was written in 2003 by Rakesh Kumar, along with colleagues at UCSD and HP Labs. He proposed a single-ISA heterogenous multicore design, but in this case based on the Alpha microprocessors, a CPU line that, at the time, was being targeted to high-end workstations and servers.

He found that a chip with four different Alpha core microarchitectures had the potential to “increase energy efficiency by a factor of three… without dramatic losses in performance.” He also discovered that most of these gains would be possible with as little as two types of cores.

In a recent conversation with Kumar, he expressed the notion that the time may be ripe for single-ISA heterogeneous chips to find a home in the server arena, even in high performance computing. The driver, once again, is power, or the lack thereof. As server farms and supercomputers expand in size, electricity usage has become a limiting factor. Whether you’re scaling up or scaling out, everyone is now focused on more energy-efficient computers.

“The key insight was that even if you map an application to a little core, it’s not going to perform much worse than running it on a big core,” said Kumar, referring to his earlier research. “But you can save many factors of power.”

The problem with big powerful CPUs like the Xeon, Opteron, and Power is now well known. Although Moore’ Law is still working to expand transistor budgets at a good clip, clock frequencies are stagnant. That means performance and, especially, performance-per-watt are increasing more slowly. For these high-end server chips, essentially you have to spend four units of power to deliver one unit of performance on a per core basis.

That’s a result of the superscalar nature of these big-core microarchitectures, which feature a lot of instruction level parallelism (ILP) and deep pipelines. Such a design reduces execution latency, but at a hefty price in wattage. As Kumar explains it, “It takes a lot of power and a lot of [die] area to squeeze that last 5 to 10 percent of performance.”

The implication is to just switch to smaller, power-efficient cores, with simpler pipelines and less ILP. If you can parallelize an application across many smaller, simpler cores, you get the best of both worlds: better throughput and higher energy efficiency. The problem is that for many applications, decent performance is contingent upon single-threaded performance as well. That has led to the adoption of the types of accelerator-based computing platforms mentioned at the beginning of this article, which pairs a serial CPU chip with a throughput coprocessor.

What the big/little model brings to the table is having both types of cores on the same die. And perhaps more importantly, unlike the CPU-GPU integration that AMD is doing with their Fusion chips and what NVIDIA is planning to do with their “Project Denver” platform, the big/little model consolidates on a homogeneous instruction set.

That has a number of advantages, one of which is easier software development. With a common ISA, there is no need for a complex toolchain with multiple compilers, runtimes, libraries, and debuggers that are needed to deal with two sets of architectures. For supercomputing-type applications though, writing the application is likely to remain challenging, inasmuch as the developer still has to parallelize the code as well as explicitly map the serial work and throughput work to the appropriate cores. Unlike with mobile computing, for HPC, assigning tasks to cores would be more static, since maximizing throughput is the overriding goal.

But where performance has to be compromised because of power or resource constraints, a single ISA chip is a huge advantage. So at run-time, application threads can migrate across the different microarchitectures, as needed, to optimize for throughput, power or both. And since the cores share cache and memory, suspending a thread on one core and resuming it on another is a relatively quick and painless operation.

So, for example, a render server farm equipped with big/little CPUs could shuffle application threads to faster or slower cores depending up the workload mix, available processor resources, and the turnaround time required. If a service level agreement (SLA) was in effect that allowed the rendering job to meet its deadline without maxing out on the big cores, the server farm could save on its electricity bill by utilizing more of the little cores.

It should be noted that power savings can also be achieved by varying a microprocessor’s power supply voltage and clock frequency, otherwise know as voltage/frequency scaling. But as transistor geometries shrink, this technique tends to yield diminishing returns. And as even Intel has concluded, big/little cores — Intel calls them asymmetric cores — seem to deliver the best results.

The most likely architectures to adopt the big/little paradigm over the next few years are x86 and ARM. As mentioned before ARM big.LITTLE implementations are already in the works for mobile computing, but with the unveiling of the 64-bit ARM architecture last year, and with companies like HP delving into ARM-based gear for the datacenter, big/little implementations of ARM servers could appear as early as the middle of this decade.

We may see x86-based big/little server chips even sooner. Intel, in particular, is in prime position to take advantage of this technology. For one thing, the chipmaker is the best in the business at transistor shrinking, which is an important element if you’re interested in populating a die with a useful number of big and little cores. It also has a huge stable of x86 cores designs, from the Atom chip all the way up to the Xeon.

Also, since Intel has little in the way of GPU IP that can be used for computing, the company is most likely to rely on its x86 legacy for throughput cores. For example, it’s not too hard to imagine Intel’s big-core Xeon paired up with its little-core MIC chip in a future SoC geared for HPC duty. The same model, but with a different mix of x86 microarchitectures, could also be used to build more generic enterprise server processors, not to mention its own mobile chips.

Whether Intel intends to go down this path or not remains to be seen. But a recent patent the company filed regarding mixing asymmetric x86 cores in a processor suggests the chipmaker has indeed given serious thought to big/little products. And since both AMD and NVIDIA are pursing their own heterogeneous SoCs, which by the way could also incorporated this technology, Intel is not likely cede any advantage to its competitors.

The big/little approach won’t be a panacea for energy-efficient computing, but it looks like one of the most promising approaches, at least at the level of the CPU. The fact that it incorporates the advantages of a heterogeneous architecture, but with a simpler model, has much to recommend it. And while big/little CPUs may be seen as somewhat of a threat to GPU computing, it can also be viewed as a complementary technology. What is certain is that the days of one-size-fits-all architectures are coming to a close.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This