Convey Cranks Up Performance with Latest FPGA-Accelerated Computer

By Michael Feldman

April 24, 2012

Convey Computer has launched its newest x86-FPGA “hybrid-core” server. Dubbed HC-2, it represents the first major upgrade of the system since the company introduced the HC-1 product back in 2008. The new offering promises much better performance, but with a similar price range as the original system.

The new HC-2 keeps the basic architecture Convey established with the HC-1 of an x86 host glued to a custom-wrapped FPGA board that acts as a coprocessor. Like its predecessor, the HC-2 is not a flops machine. The FPGA-based coprocessor is designed to accelerate data-intensive workloads like genome sequence alignment and other types of data mining workloads. The coprocessor memory subsystem is built like that of a vector supercomputer, able to deliver reads and write at much higher bandwidth than that of a standard commodity server.

Although there are some important hardware tweaks with the HC-2, binary compatibility has been retained so that software developed for the original HC-1 platform can execute as is on the new platform. As before, the coprocessor subsystem is tapped into via Convey-supplied libraries and tools, which allows the user to build (or reuse) customized application-specific instruction for accelerating codes. And since the platform is essentially an x86 Linux server, standard HPC software, like MPI or a workload manager, runs on the platform transparently.

Hardware-wise, most of the HC-2 upgrades are on the host side, where Convey has swapped out the older Intel Xeon X5400 (“Harpertown) used on the HC-1 with CPUs of more recent vintage, namely the Xeon X5600 (“Westmere”) and Xeon E5-2600 (“Sandy Bridge”) processors. The Westmere-based hardware will employ the 6-core X5690 CPU running at 2.93 GHz, while the Sandy Bridge-based servers will come in two basic flavors, 4-core and 8-core, but offered at clock speeds ranging from 2.4 to 3.3 GHz. The coprocessor will use the same Xilinx FPGAs present in the HC-1: Virtex-5 for the baseline server and Virtex-6 for the more performant “ex” variant.

Memory capacity is quite a bit higher on the new servers too. The Westmere-based system can reach up to 192 GB, which is a nice bump from the 128 GB limit on the HC-1 gear. Thanks to the new Sandy Bridge design, though, servers equipped with those CPUs can be outfitted with as much as 768 GB of memory. The memory capacity on the FPGA coprocessor board memory will top out at 64 GB, the same as it was on the HC-1.

I/O has been kicked up as well. Instead of just a single Gen 2 PCIe port, a SATA interface, 1 to 3 hot swap SATA drives, and an IDE optical drive, the newer servers sport up to 8 SATA drives, 2 Intel I/O modules slots, and 5 PCIe Gen 3 ports (although not all these options are available in all configurations).  Since these are essentially data-crunching machines, the extra I/O support should be much appreciated.

The biggest design change was a result of the Westmere/Sandy Bridge CPU upgrade. This forced the Convey engineers to make a decision about the host-coprocessor interconnect, which on the Harpertown-equipped HC-1 was based on Intel’s Front-Side Bus (FSB). Since Harpertown was the last FSB-based Xeon chip, with all subsequent design using the new QuickPath Interconnect (QPI), Convey had to go either stay native and build a QPI-based system or use PCIe. They opted for the latter, which, given that PCIe is an industry standard, gave them the most flexibility going forward.

Moving to PCIe also freed up a CPU socket that was taken up by the coprocessor interface under the FSB scheme. Thus the HC-2 servers can all be dual-socket servers instead of the single-socket systems of the HC-1. That’s a fortuitous development since, according to Convey CEO Bruce Toal, there was somewhat of an imbalance in the original design.

In particular, with only a single dual- or quad-core Xeon in the HC-1, in some cases there wasn’t enough x86 performance to keep up with a fully outfitted four-FPGA coprocessor, whilst simultaneously handling I/O. Now with the extra CPU on the freed socket (not to mention the more numerous cores of Westmere and Sandy Bridge), the host has a lot more cycles available to it to feed the coprocessor and I/O devices.

The company is claiming a 2- to 3-fold improvement in application performance for the HC-2 compared to the original HC-1 and a 10- to 50-fold performance boost compared to a vanilla x86 server. For example, a 12-core x86 server running a genome sequence application using the Burrows-Wheeler Aligner (BWA) algorithm can align a little over 7 thousand sequences per second. Even the older generation HC-1ex managed 27 thousand alignments per second, but with the new HC-2ex gear, that goes up to over 66 thousand alignments. A similar performance boost has been demonstrated with BLAST, the Basic Local Alignment Search Tool.

As impressive as that is, the energy efficiency of the new system is equally noteworthy. While the highest performing Sandy Bridge CPU-based servers will require an 1800 watt power supply, the majority of the HC-2 configurations will fit into a 1570 watt box. That’s only a marginally higher than the 1520 watt power supply on the original top-of-the line HC-1ex, but since the new version is promising to be at least twice as fast, performance-per-watt has improved substantially.

That plays into one of Convey’s main pitches for their hybrid-core solution: reducing the total cost of ownership (TCO). And if these HC-2 performance and power numbers hold up, that story just got better. The company says for a typical bioinformatics application you only need about 1/15 the number of HC-2ex nodes compared running the same job on a standard x86 (dual-socket Westmere) cluster. Although each Convey node is going to draw more power than a commodity server, it still works out to 83 percent less power overall for a given amount of application throughput. Likewise, datacenter floor space is just a fraction of what would be needed for an all-x86 setup. Overall, Convey estimates a three-year TCO savings of 75 percent.

Toal says it’s a bit easier to convince commercial users of the TCO advantages, since they are more sensitive to datacenter operations costs than their academic counterparts. In research environments, the electricity bill is typically paid by the institution, so these users tend to be less concerned about energy efficiency. “You have to find the guy that owns the power budget,” says Toal.

Nevertheless, a good chunk of Convey’s business is done with non-commercial customers across all their four principle application domains: bioinformatics, government, telco, and research. Not surprisingly for an FPGA-based solution, bioinformatics is the biggest vertical, which, according to Toal, represents 36 percent of their shipments. Government, which includes a lot of classified apps (think national security-type data mining) and defense work, is second at 21 percent. The research space proper, which is centered on deployments at DOE national labs like Oak Ridge and Lawrence Berkeley National Labs, is 18 percent of the business. Lastly is the telco market, which represents 17 percent of Convey’s shipments.

System pricing on the new HC-2 offerings are in line with the HC-1 products. A Westmere-based HC-2 server with a minimal configuration begins at $40,000; the corresponding Sandy Bridge box starts at $41K. Adding faster processors and more memory will kick up the price accordingly. The Westmere-based servers are already available and have been shipping for some time, including one deployment at Jackson Laboratory (JAX), in Maine. The Sandy Bridge gear won’t be available until July.

Related Articles

Convey Bends to Inflection Point

Convey Debuts Second-Generation Hybrid-Core Platform

Startup Provides a New Twist on Reconfigurable Supercomputing

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in advanci Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

ESnet Now Moving More Than 1 Petabyte/wk

December 12, 2017

Optimizing ESnet (Energy Sciences Network), the world's fastest network for science, is an ongoing process. Recently a two-year collaboration by ESnet users – the Petascale DTN Project – achieved its ambitious goal t Read more…

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

SC17 Cluster Competition: Who Won and Why? Results Analyzed and Over-Analyzed

November 28, 2017

Everyone by now knows that Nanyang Technological University of Singapore (NTU) took home the highest LINPACK Award and the Overall Championship from the recently concluded SC17 Student Cluster Competition. We also already know how the teams did in the Highest LINPACK and Highest HPCG competitions, with Nanyang grabbing bragging rights for both benchmarks. Read more…

By Dan Olds

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This