Cycle Spins Up 50,000-core Cluster in Amazon Cloud

By Tiffany Trader

April 24, 2012

The case for utility supercomputing just got a lot bigger, literally. Cycle Computing has created a 50,000 core virtual supercomputer to assist in the development of novel drug compounds for cancer research. The cluster, codenamed Naga, sits in the Amazon infrastructure and is the biggest utility supercomputer yet. Using this mega-cluster, computational chemistry outfit Schrödinger was able to analyze 21 million drug compounds in just 3 hours for less than $4,900.

molecules

Developing a real compound, or assay, is very expensive, so before you do this you need to test all leads on a computer. Schrödinger and research partner Nimbus Discovery are working to identify important targets that have so-far been unsuccessful. They are looking for “hits” – a process that occurs very early on in the drug discovery cycle. After the hit stage comes the hit-to-lead phase and then lead optimization. Lead optimization produces a development candidate for human trials. But the process has to start somewhere, and that’s where virtual screening comes in. It’s the foundation for 2 to 5 years of discovery.

Schrödinger uses its proprietary docking application, Glide, to virtually screen different compounds against a potential cancer drug target. Out of a huge number of compounds, the computer model will whittle the initial pool down to the most worthy candidates. With Glide, as with most computer models, there’s a trade-off between accuracy and speed. Shortcuts are commonly employed to accommodate resource and time limitations.

Glide employs a series of progressive refinements, each an order of magnitude more computationally-intensive than the last. The first pass is performed with the fastest, least-accurate Glide algorithm, HTVS, which stands for, high-throughput virtual screening. About 10 percent of the initial candidates make it through to the next round, which is called SP, for standard precision. The third and final phase is XP for extra precision. This round takes 10 percent of the compounds from the previous run and outputs only the most worthy drug candidates, the ones most capable of affecting the targeted disease proteins.

The same tradeoff that allows researchers to analyze more compounds at a faster rate also leads to a significant number of false negatives and positives because the lower-quality algorithm may fail to identify good candidate compounds, while letting false positives slip by. The greater risk here is that potential blockbuster drugs are just passed over.

The utility nature of the Amazon supercomputer allows the scientists to skip the first step and move right to the second, more accurate mode. It also allows them to increase their compound set by a factor of three. So while normally they input 6 to 7 million compounds, they can now start with 21 million. Applying the higher-quality algorithm to a larger compound set reduces the problem of false negatives. The researchers are then able to identify the active compounds that would otherwise fall through the cracks.

While Schrödinger makes heavy use of its internal clusters, it requires additional resources for particularly compute-intensive workloads. With the Naga cluster, Schrödinger researchers were able to run this exceptionally large workload in record time, 21 million compounds and confirmations in just 3 hours. By comparison, running the same job on their internal 400-core cluster would take about 275 hours. Initial data sets are on the order of tens of gigabytes of molecule data, and depending on Internet bandwidth, uploading the data can take about 5 to 6 hours. Since the library of compounds is largely a static data set, it only needs to be updated once every six months or so.

“This project reflects the major trends we are seeing in medicine today. It’s the age of analytics and simulation, meaning big data and big compute,” remarks Cycle Computing CEO Jason Stowe. “We’re also seeing requirements on time-to-market and being capital-efficient. Building a 50,000 core infrastructure is a $20-30 million endeavor,” he adds.

Naga AWS deployment map
A map of the AWS compute resources harnessed during the Naga run

 

Next page >>>

A cutting-edge scientific research outfit, Schrödinger still has to face the economic realities that go along with being a small business. CEO Ramy Farid agrees that purchasing a system like this outright would be extremely expensive. Even more to the point, virtual screening is done sporadically. Farid estimates that over the course of a year, they do maybe 25 virtual screens at 3 hours each. While they do have other computational work to perform, it’s not enough to justify additional in-house resources, and certainly not a supercomputer of this ilk.

Farid points out that this dramatic increase in the number of processors lets you do better science. “It’s been like that since computing started,” he notes. As an example, Farid recalls the days when scientists had to intentionally omit hydrogen atoms on structures because computers just weren’t fast enough.

Schrödinger also uses the Cycle-based Amazon cloud to offload some of its lead optimization work, which involves doing calculations to predict binding affinity. Although not at the scale of the virtual screening process, lead optimization is still quite compute-intensive. Farid characterizes this work as the holy grail of computational chemistry, and using the Cycle setup, they’ve been able to take work that would require several months on a cluster down to a weekend on the cloud.

This speaks to the paradigm shift that Stowe is so passionate about. Despite the exponential advances in compute power driven by Moore’s Law, access to HPC resources is still one of the biggest constraints in research. Utility computing is creating a new dynamic by providing virtually unlimited computing power on-demand, and the user only has to pay for what they use. Researchers are accustomed to having to frame their questions according to the resources they have available, but the new model allows researchers to ask the most important questions, the ones that will actually move the science forward.

This 50,000-core cloud is the largest Cycle has constructed for a client, but the HPC software company has created a number of notable clusters. Last year, they did a 10,000-core run with Genentech, and a 30,000-core run with a top 5 pharmaceutical firm. Stowe points out that those organizations, however, were quite large, so theoretically-speaking, could have purchased a cluster of that size outright. What makes Schrödinger such an ideal use case, according to Stowe, is how Cycle and Amazon were able to provide a resource that otherwise would have been out of reach.

“Cycle Cloud automates the process of turning raw infrastructure into usual HPC environments,” says Stowe. “It’s like using a TOP500 supercomputer for a few hours and then turning it off.”

 Naga: Facts and Figures
 Metric  Count
 Compute Hours of Work  109,927 hours
 Compute Days of Work  4,580 days
 Compute Years of Work   12.55 years
 Ligand Count  ~21 million ligands
 Run Time  ~3 hours
 Grand Total Cost at Peak: $4,828/hour    ( $0.09 / core / hour )

 

 

 

 

 

 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This