Cycle Spins Up 50,000-core Cluster in Amazon Cloud

By Tiffany Trader

April 24, 2012

The case for utility supercomputing just got a lot bigger, literally. Cycle Computing has created a 50,000 core virtual supercomputer to assist in the development of novel drug compounds for cancer research. The cluster, codenamed Naga, sits in the Amazon infrastructure and is the biggest utility supercomputer yet. Using this mega-cluster, computational chemistry outfit Schrödinger was able to analyze 21 million drug compounds in just 3 hours for less than $4,900.

molecules

Developing a real compound, or assay, is very expensive, so before you do this you need to test all leads on a computer. Schrödinger and research partner Nimbus Discovery are working to identify important targets that have so-far been unsuccessful. They are looking for “hits” – a process that occurs very early on in the drug discovery cycle. After the hit stage comes the hit-to-lead phase and then lead optimization. Lead optimization produces a development candidate for human trials. But the process has to start somewhere, and that’s where virtual screening comes in. It’s the foundation for 2 to 5 years of discovery.

Schrödinger uses its proprietary docking application, Glide, to virtually screen different compounds against a potential cancer drug target. Out of a huge number of compounds, the computer model will whittle the initial pool down to the most worthy candidates. With Glide, as with most computer models, there’s a trade-off between accuracy and speed. Shortcuts are commonly employed to accommodate resource and time limitations.

Glide employs a series of progressive refinements, each an order of magnitude more computationally-intensive than the last. The first pass is performed with the fastest, least-accurate Glide algorithm, HTVS, which stands for, high-throughput virtual screening. About 10 percent of the initial candidates make it through to the next round, which is called SP, for standard precision. The third and final phase is XP for extra precision. This round takes 10 percent of the compounds from the previous run and outputs only the most worthy drug candidates, the ones most capable of affecting the targeted disease proteins.

The same tradeoff that allows researchers to analyze more compounds at a faster rate also leads to a significant number of false negatives and positives because the lower-quality algorithm may fail to identify good candidate compounds, while letting false positives slip by. The greater risk here is that potential blockbuster drugs are just passed over.

The utility nature of the Amazon supercomputer allows the scientists to skip the first step and move right to the second, more accurate mode. It also allows them to increase their compound set by a factor of three. So while normally they input 6 to 7 million compounds, they can now start with 21 million. Applying the higher-quality algorithm to a larger compound set reduces the problem of false negatives. The researchers are then able to identify the active compounds that would otherwise fall through the cracks.

While Schrödinger makes heavy use of its internal clusters, it requires additional resources for particularly compute-intensive workloads. With the Naga cluster, Schrödinger researchers were able to run this exceptionally large workload in record time, 21 million compounds and confirmations in just 3 hours. By comparison, running the same job on their internal 400-core cluster would take about 275 hours. Initial data sets are on the order of tens of gigabytes of molecule data, and depending on Internet bandwidth, uploading the data can take about 5 to 6 hours. Since the library of compounds is largely a static data set, it only needs to be updated once every six months or so.

“This project reflects the major trends we are seeing in medicine today. It’s the age of analytics and simulation, meaning big data and big compute,” remarks Cycle Computing CEO Jason Stowe. “We’re also seeing requirements on time-to-market and being capital-efficient. Building a 50,000 core infrastructure is a $20-30 million endeavor,” he adds.

Naga AWS deployment map
A map of the AWS compute resources harnessed during the Naga run

 

Next page >>>

A cutting-edge scientific research outfit, Schrödinger still has to face the economic realities that go along with being a small business. CEO Ramy Farid agrees that purchasing a system like this outright would be extremely expensive. Even more to the point, virtual screening is done sporadically. Farid estimates that over the course of a year, they do maybe 25 virtual screens at 3 hours each. While they do have other computational work to perform, it’s not enough to justify additional in-house resources, and certainly not a supercomputer of this ilk.

Farid points out that this dramatic increase in the number of processors lets you do better science. “It’s been like that since computing started,” he notes. As an example, Farid recalls the days when scientists had to intentionally omit hydrogen atoms on structures because computers just weren’t fast enough.

Schrödinger also uses the Cycle-based Amazon cloud to offload some of its lead optimization work, which involves doing calculations to predict binding affinity. Although not at the scale of the virtual screening process, lead optimization is still quite compute-intensive. Farid characterizes this work as the holy grail of computational chemistry, and using the Cycle setup, they’ve been able to take work that would require several months on a cluster down to a weekend on the cloud.

This speaks to the paradigm shift that Stowe is so passionate about. Despite the exponential advances in compute power driven by Moore’s Law, access to HPC resources is still one of the biggest constraints in research. Utility computing is creating a new dynamic by providing virtually unlimited computing power on-demand, and the user only has to pay for what they use. Researchers are accustomed to having to frame their questions according to the resources they have available, but the new model allows researchers to ask the most important questions, the ones that will actually move the science forward.

This 50,000-core cloud is the largest Cycle has constructed for a client, but the HPC software company has created a number of notable clusters. Last year, they did a 10,000-core run with Genentech, and a 30,000-core run with a top 5 pharmaceutical firm. Stowe points out that those organizations, however, were quite large, so theoretically-speaking, could have purchased a cluster of that size outright. What makes Schrödinger such an ideal use case, according to Stowe, is how Cycle and Amazon were able to provide a resource that otherwise would have been out of reach.

“Cycle Cloud automates the process of turning raw infrastructure into usual HPC environments,” says Stowe. “It’s like using a TOP500 supercomputer for a few hours and then turning it off.”

 Naga: Facts and Figures
 Metric  Count
 Compute Hours of Work  109,927 hours
 Compute Days of Work  4,580 days
 Compute Years of Work   12.55 years
 Ligand Count  ~21 million ligands
 Run Time  ~3 hours
 Grand Total Cost at Peak: $4,828/hour    ( $0.09 / core / hour )

 

 

 

 

 

 

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantum Companies D-Wave and Rigetti Again Face Stock Delisting

October 4, 2024

Both D-Wave (NYSE: QBTS) and Rigetti (Nasdaq: RGTI) are again facing stock delisting. This is a third time for D-Wave, which issued a press release today following notification by the SEC. Rigetti was notified of delisti Read more…

Alps Scientific Symposium Highlights AI’s Role in Tackling Science’s Biggest Challenges

October 4, 2024

ETH Zürich recently celebrated the launch of the AI-optimized “Alps” supercomputer with a scientific symposium focused on the future possibilities of scientific AI thanks to increased compute power and a flexible ar Read more…

The New MLPerf Storage Benchmark Runs Without ML Accelerators

October 3, 2024

MLCommons is known for its independent Machine Learning (ML) benchmarks. These benchmarks have focused on mathematical ML operations and accelerators (e.g., Nvidia GPUs). Recently, MLCommons introduced the results of its Read more…

DataPelago Unveils Universal Engine to Unite Big Data, Advanced Analytics, HPC, and AI Workloads

October 3, 2024

DataPelago today emerged from stealth with a new virtualization layer that it says will allow users to move AI, data analytics, and ETL workloads to whatever physical processor they want, without making code changes, the Read more…

IBM Quantum Summit Evolves into Developer Conference

October 2, 2024

Instead of its usual quantum summit this year, IBM will hold its first IBM Quantum Developer Conference which the company is calling, “an exclusive, first-of-its-kind.” It’s planned as an in-person conference at th Read more…

Stayin’ Alive: Intel’s Falcon Shores GPU Will Survive Restructuring

October 2, 2024

Intel's upcoming Falcon Shores GPU will survive the brutal cost-cutting measures as part of its "next phase of transformation." An Intel spokeswoman confirmed that the company will release Falcon Shores as a GPU. The com Read more…

The New MLPerf Storage Benchmark Runs Without ML Accelerators

October 3, 2024

MLCommons is known for its independent Machine Learning (ML) benchmarks. These benchmarks have focused on mathematical ML operations and accelerators (e.g., Nvi Read more…

DataPelago Unveils Universal Engine to Unite Big Data, Advanced Analytics, HPC, and AI Workloads

October 3, 2024

DataPelago today emerged from stealth with a new virtualization layer that it says will allow users to move AI, data analytics, and ETL workloads to whatever ph Read more…

Stayin’ Alive: Intel’s Falcon Shores GPU Will Survive Restructuring

October 2, 2024

Intel's upcoming Falcon Shores GPU will survive the brutal cost-cutting measures as part of its "next phase of transformation." An Intel spokeswoman confirmed t Read more…

How GenAI Will Impact Jobs In the Real World

September 30, 2024

There’s been a lot of fear, uncertainty, and doubt (FUD) about the potential for generative AI to take people’s jobs. The capability of large language model Read more…

IBM and NASA Launch Open-Source AI Model for Advanced Climate and Weather Research

September 25, 2024

IBM and NASA have developed a new AI foundation model for a wide range of climate and weather applications, with contributions from the Department of Energy’s Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Building the Quantum Economy — Chicago Style

September 24, 2024

Will there be regional winner in the global quantum economy sweepstakes? With visions of Silicon Valley’s iconic success in electronics and Boston/Cambridge� Read more…

How GPUs Are Embedded in the HPC Landscape

September 23, 2024

Grasping the basics of Graphics Processing Unit (GPU) architecture is crucial for understanding how these powerful processors function, particularly in high-per Read more…

Shutterstock_2176157037

Intel’s Falcon Shores Future Looks Bleak as It Concedes AI Training to GPU Rivals

September 17, 2024

Intel's Falcon Shores future looks bleak as it concedes AI training to GPU rivals On Monday, Intel sent a letter to employees detailing its comeback plan after Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Granite Rapids HPC Benchmarks: I’m Thinking Intel Is Back (Updated)

September 25, 2024

Waiting is the hardest part. In the fall of 2023, HPCwire wrote about the new diverging Xeon processor strategy from Intel. Instead of a on-size-fits all approa Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Ansys Fluent® Adds AMD Instinct™ MI200 and MI300 Acceleration to Power CFD Simulations

September 23, 2024

Ansys Fluent® is well-known in the commercial computational fluid dynamics (CFD) space and is praised for its versatility as a general-purpose solver. Its impr Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Leading Solution Providers

Contributors

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

IBM Develops New Quantum Benchmarking Tool — Benchpress

September 26, 2024

Benchmarking is an important topic in quantum computing. There’s consensus it’s needed but opinions vary widely on how to go about it. Last week, IBM introd Read more…

Quantum and AI: Navigating the Resource Challenge

September 18, 2024

Rapid advancements in quantum computing are bringing a new era of technological possibilities. However, as quantum technology progresses, there are growing conc Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Google’s DataGemma Tackles AI Hallucination

September 18, 2024

The rapid evolution of large language models (LLMs) has fueled significant advancement in AI, enabling these systems to analyze text, generate summaries, sugges Read more…

Microsoft, Quantinuum Use Hybrid Workflow to Simulate Catalyst

September 13, 2024

Microsoft and Quantinuum reported the ability to create 12 logical qubits on Quantinuum's H2 trapped ion system this week and also reported using two logical qu Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

US Implements Controls on Quantum Computing and other Technologies

September 27, 2024

Yesterday the Commerce Department announced export controls on quantum computing technologies as well as new controls for advanced semiconductors and additive Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire