ESnet Launches Architecture to Help Researchers Deliver on Data-Intensive Science

By Nicole Hemsoth

April 26, 2012

The U.S. Department of Energy’s Energy Sciences Network, or ESnet, provides reliable high-bandwidth network services to thousands of researchers tackling some of the most pressing scientific and engineering problems, such as finding new sources of clean energy, increasing energy efficiency, understanding climate change, developing new materials for industry and discovering the nature of our universe. To support these research endeavors, ESnet connects scientists at more than 40 DOE sites with experimental and computing facilities in the U.S. and abroad, as well as with their collaborators around the world. ESnet is managed for DOE’s Office of Science by Lawrence Berkeley National Laboratory.

As science becomes increasingly data-intensive, the ESnet staff regularly meets with scientists to better understand their future networking needs, then develops and deploys the infrastructure and services to address those requirements before they become a reality. One example of this is the Advanced Networking Initiative, a prototype 100 gigabits-per-second networking connecting the DOE Office of Science’s top supercomputing centers in California, Illinois and Tennessee, and an international peering point in New York. This 100 Gbps prototype is now being transitioned to production and will be rolled out to all other connected DOE sites in the coming year.

In order to help these research institutions fully capitalize on this growing availability of bandwidth to manage their growing data sets, ESnet is now working with the scientific community to encourage the use of a network design model called the “Science DMZ.” The Science DMZ is a specially designed local networking infrastructure aimed at speeding the delivery of scientific data. In March 2012, the National Science Foundation supported the concept by issuing a solicitation for proposals from universities to develop Science DMZs as they upgrade their local network infrastructures.

Leading the development of the Science DMZ effort at ESnet is Eli Dart, a network engineer with previous experience at Sandia National Laboratories and the National Energy Research Scientific Computing Center. In this interview conducted by Jon Bashor of Berkeley Lab, Dart answers some basic questions about the nature of the project and its principle goals.

Jon Bashor: What is the Science DMZ and where did the Science DMZ idea come from?

Eli Dart: In its purest form, it’s an element of the overall network architecture, typically a dedicated portion of a site or campus network, located as close to the network perimeter as possible, that serves only high-performance science applications. The intent of the Science DMZ is to simplify the deployment and support of high-performance and data-intensive science applications that rely on high-speed networking for success. These applications have unique network requirements that typically cannot be met by networks that are optimized for normal business operations like web browsing, procurement and financial systems, and the like. The idea itself came from two places.

The concept of a DMZ network originated in the network security space where so-called network “demilitarized zones” or DMZs are used to provide a dedicated portion of the network near the site perimeter specifically configured to support services that interact with the outside world. These services often include authoritative DNS, incoming email, outward facing websites, etc. These services usually fall under a security policy that’s different than the one for the rest of the enterprise architecture.

You can extend that notion to build a dedicated piece of the network specifically for high performance scientific applications, again located at or near the perimeter, and with hardware you know can handle these applications. The Science DMZ is not configured to handle the standard enterprise or business functions, such as email and web servers, desktop applications, and so forth. These typically need a massive security infrastructure to protect them, and the security measures required to protect business servers and desktop applications typically cause problems for high-performance applications. The Science DMZ model explicitly separates the science traffic from general-purpose network traffic, and allows appropriate security policies and enforcement mechanisms to be applied to each.

The second source for the Science DMZ concept came from working with TCP, or the Transmission Control Protocol. While most science applications that need reliable data delivery use TCP-based tools for data movement, TCP’s interpretation of packet loss can cause performance issues. TCP interprets packet loss as network congestion, and so when loss is encountered TCP dramatically reduces its sending rate – slowing the data transfer. In practice even a tiny amount of loss (much less than 1%) can be enough to reduce TCP performance by over a factor of 100.

For years people have been trying to fix TCP (with some success), but packet loss combined with high latency is a serious performance killer. It’s easier to build an infrastructure to provide loss-free IP service and to accommodate TCP rather than change it – this is what the Science DMZ model aims to accomplish.

Bashor: What makes up the Science DMZ model?

Dart: The Science DMZ itself is a portion of the network, at or near the site perimeter, which is specifically configured to support high-performance science applications. There are several key aspects to the Science DMZ.

First, it must be built with capable equipment that can handle high-rate flows without dropping packets. Typically, that means good equipment (not cheap wiring closet switches) with enough output buffer space to handle bursty high-rate long-distance TCP flows. The switches and routers need to be able to accurately account for packets (especially the ones they drop) so that packet loss can be accounted for and its cause fixed.

Second, data transfer should be done on dedicated servers – Data Transfer Nodes, or DTNs – that are designed and configured for the purpose. Their TCP stacks need to be tuned and they need access to high-speed storage. We have seen successful DTN implementations using high-speed local RAID as well as GPFS or Lustre filesystems, the parallel filesystem model is typically found at supercomputer centers.

Third, a Science DMZ needs test and measurement infrastructure, typically perfSONAR that allows you to identify any issue that may be causing performance issues. Many problems that are real performance killers are what we call “soft failures.” A soft failure causes performance degradation so that the network is not useful for data-intensive science but does not cause an outage that identifies the failing component. The only way to find these is to independently test the infrastructure to locate the problem – if perfSONAR is already deployed, this is much easier than if the first step of the process is to find and deploy a test machine and the second step is to get the site at the other end to find a spare box and deploy it.

Finally, the Science DMZ incorporates a security policy that is tailored to the science applications rather than to general-purpose business computing. You don’t need to scan 50TB of simulation output for email viruses, and you don’t run an email client on your Data Transfer Node. So, why conflate the security policies and enforcement mechanisms for the two, especially when doing so will effectively compromise the science mission? Firewalls and other security enforcement boxes are typically unable to handle the throughput needed for data-intensive science – and they essentially never support advanced science services such as virtual circuits or software-defined networking.

Bashor: Why does it matter?

Dart: The real reason all this matters is that the current and future generations of scientific instruments are producing data at a level we’ve never seen before. Based on our projections, ESnet is expected to carry over 100 petabytes of data per month by 2015. And there is the potential for stupendous scientific advancements in that data deluge. The challenge is to figure out how to get the science done without spending the bulk of your time doing data management. Scientists are physicists, chemists, biologists, geneticists and so on, but they are seldom network experts. They are scientists.

The data volumes are becoming large enough that the systems and networks are not capable of handling them if the equipment is configured to default settings or to accommodate business applications. There’s a need for an infrastructure that supports data-intensive science. That infrastructure needs to be designed for data mobility, which means you can get the data where you need it, when you need it. In some cases, the analysis code is on a system close to the data, while other times the scientist wants to analyze the data on local resources – we need to support it all. Data-intensive science is what we’re all going to be doing for the next decade or more.

Bashor: Can you describe a typical user who would benefit from having a Science DMZ?

Dart: The main benefit of the Science DMZ is that the scientist who needs to move data doesn’t have to first troubleshoot the infrastructure in order to use it. Scientists should not have to fix the network, the data transfer servers, and so forth before they can get to work.

There really isn’t a typical user, but there are some basic commonalities. One example could be data taken from a beamline at DOE’s Advanced Light Source. A data transfer node has been set up and Globus Online installed for users who need to fetch the data. Then you have the well-known Large Hadron Collider, which has several primary Tier 1 centers feeding data to the Tier 2 centers. This requires significantly more infrastructure. In both cases, you need to make sure the network is designed correctly so that data transfer tools work correctly. These fundamental principles benefit all users.

Bashor: How does ESnet play into this equation?

Dart: ESnet is the high-performance network for DOE’s Office of Science. It’s the backbone network infrastructure for the national laboratory system, supporting science at those labs. Through our 25 years of experience serving the scientific community, we have become a central repository for the expertise to support high-performance networking. So, part of our job is to be available to support scientists at the labs and their collaborators, such as researchers at universities.

The assumption is that the high-performance network infrastructure exists to support all parts of these modern scientific collaborations. The services must be consistent from end to end – from scientist to scientist – now matter where they may located and regardless of who owns the pieces of the infrastructure. For example, if scientists at the SLAC Linear Accelerator Center are sharing data with colleagues at a Max Planck Institute in Germany, the data moves from SLAC’s local network over ESnet to GEANT, the pan-European research network, then over Germany’s DFN network and onto the local network at the institute – crossing five different domains, owned and operated by five different organizations. ESnet has built partnerships with the global ecosystem of research and education networks so that if a network problem occurs, we can work collaboratively to quickly resolve it – wherever it is.

Bashor: The NSF recently cited Science DMZ as an upgrade that universities should consider as they work to enhance their overall IT infrastructure. Your thoughts on this?

Dart: We think it’s wonderful. The infrastructure that will be built with those funds will enable discoveries that otherwise would not be possible. It’s a critical investment in the scientific infrastructure of this country.

As I said, we’re all going spend the next decade or more supporting data-intensive science, so we need to get the infrastructure right. It needs to be adaptable, flexible and expandable. We can see what’s coming in the next one to three years. In some fields, the cost of generating data has fallen to almost zero. In genome sequencing, the cost per genome has fallen off a cliff. The cost of a raw megabyte of DNA sequence is now less than 10 cents. In July 2001, it was about $4,500. What this means is that we are entering a world where scientific productivity is gated on data analysis, not data generation.

In physics, new detectors will capture data in the terabyte-per-second range, with data analysis and reduction built into the detectors, so that only the data the researchers are really interested in will be kept. This is already happening at the LHC. The ATLAS detector generates about a petabyte of data a second. It’s sent through a multi-stage trigger farm where it’s reduced to about 2.5 gigabits per second coming out. Now many other science domains are getting into this same situation.

Looking 10 years out is beyond the current planning and budget outlooks – and well outside the scope of a single procurement or a single technology. This puts the work into the architecture space, not the technology or device space. We do know that everything about the data is growing exponentially, but not the funding. So we need to design a system that works well in general and is adaptable.

If you want to do capability-class science, you need to have capability-class infrastructure. You have to have the resources appropriate to get the most return on your scientific investment.

Bashor: ESnet has a number of projects to improve end-to-end network performance through testing and measurement. Can you talk about those briefly?

Dart: Performance testing and measurement is absolutely critical. If we go back to the need to accommodate TCP because packet loss is the number one enemy of data-intensive science, we have to be able to find and fix any problems quickly. Because issues can arise anywhere on the network path which can include multiple administrative domains, you need to have the means to individually test the paths, and take out or reconfigure the problem areas.

For this reason, ESnet – with Internet2 and several other collaborators – helped develop perfSONAR, an infrastructure for network performance monitoring, making it easier to solve end-to-end performance problems on paths crossing several networks. ESnet has test and measurement capabilities at every hub site and router on our network. You have to have this infrastructure in place before a problem occurs – this allows you to find and fix the problem in hours or days, not months.

Another service for improving end-to-end performance is OSCARS, ESnet’s On-Demand Secure Circuits and Advance Reservation System. OSCARS provides multi-domain, high-bandwidth virtual circuits that guarantee end-to-end network data transfer performance. With a Science DMZ, OSCARS can touch down at an institution, along with other science-specific services. This allows for capability-class services to be used without interfering with the enterprise system. The bottom line is that science opportunities have a better chance of not being missed.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian and American Scientists Achieve 50% Increase in Data Transmission Speed

September 20, 2018

As high-performance computing becomes increasingly data-intensive and the demand for shorter turnaround times grows, data transfer speed becomes an ever more important bottleneck. Now, in an article published in IEEE Tra Read more…

By Oliver Peckham

IBM to Brand Rescale’s HPC-in-Cloud Platform

September 20, 2018

HPC (or big compute)-in-the-cloud platform provider Rescale has formalized the work it’s been doing in partnership with public cloud vendors by announcing its Powered by Rescale program – with IBM as its first named Read more…

By Doug Black

Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements i Read more…

By Wolfgang Gentzsch

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Clouds Over the Ocean – a Healthcare Perspective

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Read more…

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Gordon Bell Prize used Summit in their work. That’s impres Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This