ESnet Launches Architecture to Help Researchers Deliver on Data-Intensive Science

By Nicole Hemsoth

April 26, 2012

The U.S. Department of Energy’s Energy Sciences Network, or ESnet, provides reliable high-bandwidth network services to thousands of researchers tackling some of the most pressing scientific and engineering problems, such as finding new sources of clean energy, increasing energy efficiency, understanding climate change, developing new materials for industry and discovering the nature of our universe. To support these research endeavors, ESnet connects scientists at more than 40 DOE sites with experimental and computing facilities in the U.S. and abroad, as well as with their collaborators around the world. ESnet is managed for DOE’s Office of Science by Lawrence Berkeley National Laboratory.

As science becomes increasingly data-intensive, the ESnet staff regularly meets with scientists to better understand their future networking needs, then develops and deploys the infrastructure and services to address those requirements before they become a reality. One example of this is the Advanced Networking Initiative, a prototype 100 gigabits-per-second networking connecting the DOE Office of Science’s top supercomputing centers in California, Illinois and Tennessee, and an international peering point in New York. This 100 Gbps prototype is now being transitioned to production and will be rolled out to all other connected DOE sites in the coming year.

In order to help these research institutions fully capitalize on this growing availability of bandwidth to manage their growing data sets, ESnet is now working with the scientific community to encourage the use of a network design model called the “Science DMZ.” The Science DMZ is a specially designed local networking infrastructure aimed at speeding the delivery of scientific data. In March 2012, the National Science Foundation supported the concept by issuing a solicitation for proposals from universities to develop Science DMZs as they upgrade their local network infrastructures.

Leading the development of the Science DMZ effort at ESnet is Eli Dart, a network engineer with previous experience at Sandia National Laboratories and the National Energy Research Scientific Computing Center. In this interview conducted by Jon Bashor of Berkeley Lab, Dart answers some basic questions about the nature of the project and its principle goals.

Jon Bashor: What is the Science DMZ and where did the Science DMZ idea come from?

Eli Dart: In its purest form, it’s an element of the overall network architecture, typically a dedicated portion of a site or campus network, located as close to the network perimeter as possible, that serves only high-performance science applications. The intent of the Science DMZ is to simplify the deployment and support of high-performance and data-intensive science applications that rely on high-speed networking for success. These applications have unique network requirements that typically cannot be met by networks that are optimized for normal business operations like web browsing, procurement and financial systems, and the like. The idea itself came from two places.

The concept of a DMZ network originated in the network security space where so-called network “demilitarized zones” or DMZs are used to provide a dedicated portion of the network near the site perimeter specifically configured to support services that interact with the outside world. These services often include authoritative DNS, incoming email, outward facing websites, etc. These services usually fall under a security policy that’s different than the one for the rest of the enterprise architecture.

You can extend that notion to build a dedicated piece of the network specifically for high performance scientific applications, again located at or near the perimeter, and with hardware you know can handle these applications. The Science DMZ is not configured to handle the standard enterprise or business functions, such as email and web servers, desktop applications, and so forth. These typically need a massive security infrastructure to protect them, and the security measures required to protect business servers and desktop applications typically cause problems for high-performance applications. The Science DMZ model explicitly separates the science traffic from general-purpose network traffic, and allows appropriate security policies and enforcement mechanisms to be applied to each.

The second source for the Science DMZ concept came from working with TCP, or the Transmission Control Protocol. While most science applications that need reliable data delivery use TCP-based tools for data movement, TCP’s interpretation of packet loss can cause performance issues. TCP interprets packet loss as network congestion, and so when loss is encountered TCP dramatically reduces its sending rate – slowing the data transfer. In practice even a tiny amount of loss (much less than 1%) can be enough to reduce TCP performance by over a factor of 100.

For years people have been trying to fix TCP (with some success), but packet loss combined with high latency is a serious performance killer. It’s easier to build an infrastructure to provide loss-free IP service and to accommodate TCP rather than change it – this is what the Science DMZ model aims to accomplish.

Bashor: What makes up the Science DMZ model?

Dart: The Science DMZ itself is a portion of the network, at or near the site perimeter, which is specifically configured to support high-performance science applications. There are several key aspects to the Science DMZ.

First, it must be built with capable equipment that can handle high-rate flows without dropping packets. Typically, that means good equipment (not cheap wiring closet switches) with enough output buffer space to handle bursty high-rate long-distance TCP flows. The switches and routers need to be able to accurately account for packets (especially the ones they drop) so that packet loss can be accounted for and its cause fixed.

Second, data transfer should be done on dedicated servers – Data Transfer Nodes, or DTNs – that are designed and configured for the purpose. Their TCP stacks need to be tuned and they need access to high-speed storage. We have seen successful DTN implementations using high-speed local RAID as well as GPFS or Lustre filesystems, the parallel filesystem model is typically found at supercomputer centers.

Third, a Science DMZ needs test and measurement infrastructure, typically perfSONAR that allows you to identify any issue that may be causing performance issues. Many problems that are real performance killers are what we call “soft failures.” A soft failure causes performance degradation so that the network is not useful for data-intensive science but does not cause an outage that identifies the failing component. The only way to find these is to independently test the infrastructure to locate the problem – if perfSONAR is already deployed, this is much easier than if the first step of the process is to find and deploy a test machine and the second step is to get the site at the other end to find a spare box and deploy it.

Finally, the Science DMZ incorporates a security policy that is tailored to the science applications rather than to general-purpose business computing. You don’t need to scan 50TB of simulation output for email viruses, and you don’t run an email client on your Data Transfer Node. So, why conflate the security policies and enforcement mechanisms for the two, especially when doing so will effectively compromise the science mission? Firewalls and other security enforcement boxes are typically unable to handle the throughput needed for data-intensive science – and they essentially never support advanced science services such as virtual circuits or software-defined networking.

Bashor: Why does it matter?

Dart: The real reason all this matters is that the current and future generations of scientific instruments are producing data at a level we’ve never seen before. Based on our projections, ESnet is expected to carry over 100 petabytes of data per month by 2015. And there is the potential for stupendous scientific advancements in that data deluge. The challenge is to figure out how to get the science done without spending the bulk of your time doing data management. Scientists are physicists, chemists, biologists, geneticists and so on, but they are seldom network experts. They are scientists.

The data volumes are becoming large enough that the systems and networks are not capable of handling them if the equipment is configured to default settings or to accommodate business applications. There’s a need for an infrastructure that supports data-intensive science. That infrastructure needs to be designed for data mobility, which means you can get the data where you need it, when you need it. In some cases, the analysis code is on a system close to the data, while other times the scientist wants to analyze the data on local resources – we need to support it all. Data-intensive science is what we’re all going to be doing for the next decade or more.

Bashor: Can you describe a typical user who would benefit from having a Science DMZ?

Dart: The main benefit of the Science DMZ is that the scientist who needs to move data doesn’t have to first troubleshoot the infrastructure in order to use it. Scientists should not have to fix the network, the data transfer servers, and so forth before they can get to work.

There really isn’t a typical user, but there are some basic commonalities. One example could be data taken from a beamline at DOE’s Advanced Light Source. A data transfer node has been set up and Globus Online installed for users who need to fetch the data. Then you have the well-known Large Hadron Collider, which has several primary Tier 1 centers feeding data to the Tier 2 centers. This requires significantly more infrastructure. In both cases, you need to make sure the network is designed correctly so that data transfer tools work correctly. These fundamental principles benefit all users.

Bashor: How does ESnet play into this equation?

Dart: ESnet is the high-performance network for DOE’s Office of Science. It’s the backbone network infrastructure for the national laboratory system, supporting science at those labs. Through our 25 years of experience serving the scientific community, we have become a central repository for the expertise to support high-performance networking. So, part of our job is to be available to support scientists at the labs and their collaborators, such as researchers at universities.

The assumption is that the high-performance network infrastructure exists to support all parts of these modern scientific collaborations. The services must be consistent from end to end – from scientist to scientist – now matter where they may located and regardless of who owns the pieces of the infrastructure. For example, if scientists at the SLAC Linear Accelerator Center are sharing data with colleagues at a Max Planck Institute in Germany, the data moves from SLAC’s local network over ESnet to GEANT, the pan-European research network, then over Germany’s DFN network and onto the local network at the institute – crossing five different domains, owned and operated by five different organizations. ESnet has built partnerships with the global ecosystem of research and education networks so that if a network problem occurs, we can work collaboratively to quickly resolve it – wherever it is.

Bashor: The NSF recently cited Science DMZ as an upgrade that universities should consider as they work to enhance their overall IT infrastructure. Your thoughts on this?

Dart: We think it’s wonderful. The infrastructure that will be built with those funds will enable discoveries that otherwise would not be possible. It’s a critical investment in the scientific infrastructure of this country.

As I said, we’re all going spend the next decade or more supporting data-intensive science, so we need to get the infrastructure right. It needs to be adaptable, flexible and expandable. We can see what’s coming in the next one to three years. In some fields, the cost of generating data has fallen to almost zero. In genome sequencing, the cost per genome has fallen off a cliff. The cost of a raw megabyte of DNA sequence is now less than 10 cents. In July 2001, it was about $4,500. What this means is that we are entering a world where scientific productivity is gated on data analysis, not data generation.

In physics, new detectors will capture data in the terabyte-per-second range, with data analysis and reduction built into the detectors, so that only the data the researchers are really interested in will be kept. This is already happening at the LHC. The ATLAS detector generates about a petabyte of data a second. It’s sent through a multi-stage trigger farm where it’s reduced to about 2.5 gigabits per second coming out. Now many other science domains are getting into this same situation.

Looking 10 years out is beyond the current planning and budget outlooks – and well outside the scope of a single procurement or a single technology. This puts the work into the architecture space, not the technology or device space. We do know that everything about the data is growing exponentially, but not the funding. So we need to design a system that works well in general and is adaptable.

If you want to do capability-class science, you need to have capability-class infrastructure. You have to have the resources appropriate to get the most return on your scientific investment.

Bashor: ESnet has a number of projects to improve end-to-end network performance through testing and measurement. Can you talk about those briefly?

Dart: Performance testing and measurement is absolutely critical. If we go back to the need to accommodate TCP because packet loss is the number one enemy of data-intensive science, we have to be able to find and fix any problems quickly. Because issues can arise anywhere on the network path which can include multiple administrative domains, you need to have the means to individually test the paths, and take out or reconfigure the problem areas.

For this reason, ESnet – with Internet2 and several other collaborators – helped develop perfSONAR, an infrastructure for network performance monitoring, making it easier to solve end-to-end performance problems on paths crossing several networks. ESnet has test and measurement capabilities at every hub site and router on our network. You have to have this infrastructure in place before a problem occurs – this allows you to find and fix the problem in hours or days, not months.

Another service for improving end-to-end performance is OSCARS, ESnet’s On-Demand Secure Circuits and Advance Reservation System. OSCARS provides multi-domain, high-bandwidth virtual circuits that guarantee end-to-end network data transfer performance. With a Science DMZ, OSCARS can touch down at an institution, along with other science-specific services. This allows for capability-class services to be used without interfering with the enterprise system. The bottom line is that science opportunities have a better chance of not being missed.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This