The Last Mile of Virtualization

By Wolfgang Gentzsch

May 3, 2012

A review of eXludus’ new micro-virtualization technology for multicore environments

In a previous article (We Need More than Multicore), I discussed the evolution of multicore processors, and the dramatic effect this processor shift can have on compute cluster performance. Clearly, leveraging a lot of cores will require that many concurrent tasks – as opposed to a single massively parallel task – run safely and predictably within a system. These concurrent tasks will range from serial to multi-threaded to parallel tasks, and all will need to share the same system resources in a productive and reliable manner.

The question becomes how to do this in operating systems (OS) environments that were not designed with multicore architectures in mind. For example, Linux, which has become the pervasive operating OS for servers, is based on time slicing, which is somewhat analogous to suboptimal round-robin server farm dispatch. But it has limitations when running many concurrent tasks that access shared processors and memory. As the number of competing tasks increases, the likelihood of interference between tasks rises exponentially.

The operating system has limited tools that identify escalating resource access problems or proactive defenses to resolve such problems. With these inherent limitations, users often realize reduced system performance and/or reliability. Nor can the OS manage work prioritization between tasks very well, so the established workload management priorities are largely lost when a mix of jobs from different queues are dispatched to a compute node. In summary, the major issues with today’s multicore systems include:

  • For most applications, users are only able to leverage the capabilities of ALL cores (and thus experience high overall utilization) by running many iterations concurrently. The challenge then becomes a balancing act. Even slightly too much work, in terms of physical memory oversubscription (as little as 5 percent), leads to performance degradation and reliability problems. Too little work gets done and valuable resources sit idle.
  • It is manually impossible to continuously balance work against resources, as the use of these resources fluctuates during an application’s execution. And user memory hints, to the extent they are accurate, have to express the high-water usage even though an application may use much less than the high-water mark for a significant percentage of the time.
  • With multi-application/multi-tenant systems, it is difficult or even impossible to meet varying service level agreements (SLAs). Users and applications may not get the level of resources expected, committed, or paid for, and performance levels may vary widely from one iteration to the next.
  • With many concurrently running applications, all work becomes largely equal in the kernel, so high-value tasks can be slowed down by low-value tasks. Under standard Linux it is difficult or even impossible to set varying priority levels for the various executing applications.
  • Full server virtualization is too heavy-handed for running high performance applications. While legacy virtualization may allow you to segment a system in an attempt to improve system utilization, the added utilization rate may be offset in large part by the hypervisor overhead. Legacy server virtualization is useful for multi-OS requirements, but if the organization just needs to run millions of jobs under the same (Linux) OS then overhead, administration, and costs are too high.  

Multicore optimization specialist eXludus Technologies believes it has the answer. The company recently announced the industry’s first micro-virtualization solution. This software creates lightweight micro-containers that encapsulate one or more applications, and are based upon defined application or project policies. These containers have embedded resource allocation intelligence that applies predictive queuing algorithms in order to optimize allocation of micro-resources, such as cores and memory. And it does so in real time.

With negligible system and administrative overhead, the eXludus solution expands the use case for virtualization, making it suitable for performance-sensitive environments (most notably, HPC) that have previously avoided virtualization because of overhead concerns.

The software promises to extract up to 70 percent more throughput from the same resources, while acting as a safety net to avoid resource over-subscription that is detrimental to system performance. Since the micro-containers run within an OS, the eXludus software can be deployed separately from or together with existing server and storage virtualization solutions.

By applying virtualization underneath the OS, a number of benefits are exposed. For example, although it’s easy to load a system, the challenge is achieving maximum utilization while avoiding resource oversubscription, which leads to performance reduction and system instability. Using a lightweight framework, micro-virtualization automates the process of optimizing resources, safely allowing system utilization to be increased. In more detail, micro-virtualization is designed to:

  • Achieve more application processing power per system, aids server consolidation, resulting in fewer systems needed for given workload, and reduces data center power demands (system power, cooling, and space).
  • Maintain kernel level task priorities so that resources are steered to high-value work.
  • Ensure SLA can be met though simple and easy to define policies.

The support of SLAs is particularly important. Multi-tenancy invariably grows with core counts, either via cloud-like unrelated users or within the enterprise, where various departments or projects end up sharing systems to a greater degree. These multi-tenants pay in some manner, either directly or via budget contribution, so they demand to get what they pay for. Therefore, consistent and predictable results are important, i.e., a user can’t complete processing in X time on one iteration and 2X on the next iteration.

Micro-virtualization provides mechanisms that ensure that specific applications, users, and projects receive the CPU and memory resources that have been paid for or committed to. Specifically, administrators can declare CPU and memory percentages that guarantee resource levels.

Within the kernel, multi-tenant/multi-user/multi-project work falls subject to equal OS time-slice behavior. That’s true even though the work, which ranges from high-cost applications to open-source, is not all equal.  Users can easily run into situations where high-value work is slowed by low-value work. Micro-virtualization provides tools that allow for discrete task prioritization that can predictably steer resource allocations.

Within an enterprise there may be many iterations of an application running, but each iteration may have unique value. Consider a chip-design environment where multiple next-gen processors are under development. The soon-to-be-released processor has more enterprise value than a design to be completed in three years. Micro-virtualization easily accommodates resource steering to the high value work, even to the extent that work can be flagged as having exclusive access to system resources — think of a chip tape-out that needs last minute fixes, or rendering where a movie is about to be released and maximum performance is required.

The eXludus solution also promises to open up HPC to virtualization. Legacy server virtualization has not been very successful in these situations as the heavyweight hypervisor approach has high overhead costs. Micro-virtualization is truly lightweight, in the range of 1 to 2 percent overhead, whereas full server virtualization may entail an 18 to 20 penalty in these scenarios. And where full virtualization complexity is administratively cumbersome, micro-virtualization is simple and literally can be deployed within hours.  

A current limitation of eXludus micro-virtualization is that all work must be run within a single OS environment, in this case Linux. And the solution does not yield an easily predictable or consistent performance gain. Throughput increases are a function of the workload, which users may find difficult to comprehend.

In aggregate though, micro-virtualization as a means to effectively segment multicore systems and extract maximum efficiencies appears to be an idea whose time has come. Service efficiency is improved and resources are more accurately steered to the highest value tasks in support of business objectives.

—–

Wolfgang Gentzsch is an independent HPC consultant for cluster, grid, and cloud computing, technologies and a member of the Board of Directors for eXludus Technologies.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This