The Last Mile of Virtualization

By Wolfgang Gentzsch

May 3, 2012

A review of eXludus’ new micro-virtualization technology for multicore environments

In a previous article (We Need More than Multicore), I discussed the evolution of multicore processors, and the dramatic effect this processor shift can have on compute cluster performance. Clearly, leveraging a lot of cores will require that many concurrent tasks – as opposed to a single massively parallel task – run safely and predictably within a system. These concurrent tasks will range from serial to multi-threaded to parallel tasks, and all will need to share the same system resources in a productive and reliable manner.

The question becomes how to do this in operating systems (OS) environments that were not designed with multicore architectures in mind. For example, Linux, which has become the pervasive operating OS for servers, is based on time slicing, which is somewhat analogous to suboptimal round-robin server farm dispatch. But it has limitations when running many concurrent tasks that access shared processors and memory. As the number of competing tasks increases, the likelihood of interference between tasks rises exponentially.

The operating system has limited tools that identify escalating resource access problems or proactive defenses to resolve such problems. With these inherent limitations, users often realize reduced system performance and/or reliability. Nor can the OS manage work prioritization between tasks very well, so the established workload management priorities are largely lost when a mix of jobs from different queues are dispatched to a compute node. In summary, the major issues with today’s multicore systems include:

  • For most applications, users are only able to leverage the capabilities of ALL cores (and thus experience high overall utilization) by running many iterations concurrently. The challenge then becomes a balancing act. Even slightly too much work, in terms of physical memory oversubscription (as little as 5 percent), leads to performance degradation and reliability problems. Too little work gets done and valuable resources sit idle.
  • It is manually impossible to continuously balance work against resources, as the use of these resources fluctuates during an application’s execution. And user memory hints, to the extent they are accurate, have to express the high-water usage even though an application may use much less than the high-water mark for a significant percentage of the time.
  • With multi-application/multi-tenant systems, it is difficult or even impossible to meet varying service level agreements (SLAs). Users and applications may not get the level of resources expected, committed, or paid for, and performance levels may vary widely from one iteration to the next.
  • With many concurrently running applications, all work becomes largely equal in the kernel, so high-value tasks can be slowed down by low-value tasks. Under standard Linux it is difficult or even impossible to set varying priority levels for the various executing applications.
  • Full server virtualization is too heavy-handed for running high performance applications. While legacy virtualization may allow you to segment a system in an attempt to improve system utilization, the added utilization rate may be offset in large part by the hypervisor overhead. Legacy server virtualization is useful for multi-OS requirements, but if the organization just needs to run millions of jobs under the same (Linux) OS then overhead, administration, and costs are too high.  

Multicore optimization specialist eXludus Technologies believes it has the answer. The company recently announced the industry’s first micro-virtualization solution. This software creates lightweight micro-containers that encapsulate one or more applications, and are based upon defined application or project policies. These containers have embedded resource allocation intelligence that applies predictive queuing algorithms in order to optimize allocation of micro-resources, such as cores and memory. And it does so in real time.

With negligible system and administrative overhead, the eXludus solution expands the use case for virtualization, making it suitable for performance-sensitive environments (most notably, HPC) that have previously avoided virtualization because of overhead concerns.

The software promises to extract up to 70 percent more throughput from the same resources, while acting as a safety net to avoid resource over-subscription that is detrimental to system performance. Since the micro-containers run within an OS, the eXludus software can be deployed separately from or together with existing server and storage virtualization solutions.

By applying virtualization underneath the OS, a number of benefits are exposed. For example, although it’s easy to load a system, the challenge is achieving maximum utilization while avoiding resource oversubscription, which leads to performance reduction and system instability. Using a lightweight framework, micro-virtualization automates the process of optimizing resources, safely allowing system utilization to be increased. In more detail, micro-virtualization is designed to:

  • Achieve more application processing power per system, aids server consolidation, resulting in fewer systems needed for given workload, and reduces data center power demands (system power, cooling, and space).
  • Maintain kernel level task priorities so that resources are steered to high-value work.
  • Ensure SLA can be met though simple and easy to define policies.

The support of SLAs is particularly important. Multi-tenancy invariably grows with core counts, either via cloud-like unrelated users or within the enterprise, where various departments or projects end up sharing systems to a greater degree. These multi-tenants pay in some manner, either directly or via budget contribution, so they demand to get what they pay for. Therefore, consistent and predictable results are important, i.e., a user can’t complete processing in X time on one iteration and 2X on the next iteration.

Micro-virtualization provides mechanisms that ensure that specific applications, users, and projects receive the CPU and memory resources that have been paid for or committed to. Specifically, administrators can declare CPU and memory percentages that guarantee resource levels.

Within the kernel, multi-tenant/multi-user/multi-project work falls subject to equal OS time-slice behavior. That’s true even though the work, which ranges from high-cost applications to open-source, is not all equal.  Users can easily run into situations where high-value work is slowed by low-value work. Micro-virtualization provides tools that allow for discrete task prioritization that can predictably steer resource allocations.

Within an enterprise there may be many iterations of an application running, but each iteration may have unique value. Consider a chip-design environment where multiple next-gen processors are under development. The soon-to-be-released processor has more enterprise value than a design to be completed in three years. Micro-virtualization easily accommodates resource steering to the high value work, even to the extent that work can be flagged as having exclusive access to system resources — think of a chip tape-out that needs last minute fixes, or rendering where a movie is about to be released and maximum performance is required.

The eXludus solution also promises to open up HPC to virtualization. Legacy server virtualization has not been very successful in these situations as the heavyweight hypervisor approach has high overhead costs. Micro-virtualization is truly lightweight, in the range of 1 to 2 percent overhead, whereas full server virtualization may entail an 18 to 20 penalty in these scenarios. And where full virtualization complexity is administratively cumbersome, micro-virtualization is simple and literally can be deployed within hours.  

A current limitation of eXludus micro-virtualization is that all work must be run within a single OS environment, in this case Linux. And the solution does not yield an easily predictable or consistent performance gain. Throughput increases are a function of the workload, which users may find difficult to comprehend.

In aggregate though, micro-virtualization as a means to effectively segment multicore systems and extract maximum efficiencies appears to be an idea whose time has come. Service efficiency is improved and resources are more accurately steered to the highest value tasks in support of business objectives.

—–

Wolfgang Gentzsch is an independent HPC consultant for cluster, grid, and cloud computing, technologies and a member of the Board of Directors for eXludus Technologies.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This