The Last Mile of Virtualization

By Wolfgang Gentzsch

May 3, 2012

A review of eXludus’ new micro-virtualization technology for multicore environments

In a previous article (We Need More than Multicore), I discussed the evolution of multicore processors, and the dramatic effect this processor shift can have on compute cluster performance. Clearly, leveraging a lot of cores will require that many concurrent tasks – as opposed to a single massively parallel task – run safely and predictably within a system. These concurrent tasks will range from serial to multi-threaded to parallel tasks, and all will need to share the same system resources in a productive and reliable manner.

The question becomes how to do this in operating systems (OS) environments that were not designed with multicore architectures in mind. For example, Linux, which has become the pervasive operating OS for servers, is based on time slicing, which is somewhat analogous to suboptimal round-robin server farm dispatch. But it has limitations when running many concurrent tasks that access shared processors and memory. As the number of competing tasks increases, the likelihood of interference between tasks rises exponentially.

The operating system has limited tools that identify escalating resource access problems or proactive defenses to resolve such problems. With these inherent limitations, users often realize reduced system performance and/or reliability. Nor can the OS manage work prioritization between tasks very well, so the established workload management priorities are largely lost when a mix of jobs from different queues are dispatched to a compute node. In summary, the major issues with today’s multicore systems include:

  • For most applications, users are only able to leverage the capabilities of ALL cores (and thus experience high overall utilization) by running many iterations concurrently. The challenge then becomes a balancing act. Even slightly too much work, in terms of physical memory oversubscription (as little as 5 percent), leads to performance degradation and reliability problems. Too little work gets done and valuable resources sit idle.
  • It is manually impossible to continuously balance work against resources, as the use of these resources fluctuates during an application’s execution. And user memory hints, to the extent they are accurate, have to express the high-water usage even though an application may use much less than the high-water mark for a significant percentage of the time.
  • With multi-application/multi-tenant systems, it is difficult or even impossible to meet varying service level agreements (SLAs). Users and applications may not get the level of resources expected, committed, or paid for, and performance levels may vary widely from one iteration to the next.
  • With many concurrently running applications, all work becomes largely equal in the kernel, so high-value tasks can be slowed down by low-value tasks. Under standard Linux it is difficult or even impossible to set varying priority levels for the various executing applications.
  • Full server virtualization is too heavy-handed for running high performance applications. While legacy virtualization may allow you to segment a system in an attempt to improve system utilization, the added utilization rate may be offset in large part by the hypervisor overhead. Legacy server virtualization is useful for multi-OS requirements, but if the organization just needs to run millions of jobs under the same (Linux) OS then overhead, administration, and costs are too high.  

Multicore optimization specialist eXludus Technologies believes it has the answer. The company recently announced the industry’s first micro-virtualization solution. This software creates lightweight micro-containers that encapsulate one or more applications, and are based upon defined application or project policies. These containers have embedded resource allocation intelligence that applies predictive queuing algorithms in order to optimize allocation of micro-resources, such as cores and memory. And it does so in real time.

With negligible system and administrative overhead, the eXludus solution expands the use case for virtualization, making it suitable for performance-sensitive environments (most notably, HPC) that have previously avoided virtualization because of overhead concerns.

The software promises to extract up to 70 percent more throughput from the same resources, while acting as a safety net to avoid resource over-subscription that is detrimental to system performance. Since the micro-containers run within an OS, the eXludus software can be deployed separately from or together with existing server and storage virtualization solutions.

By applying virtualization underneath the OS, a number of benefits are exposed. For example, although it’s easy to load a system, the challenge is achieving maximum utilization while avoiding resource oversubscription, which leads to performance reduction and system instability. Using a lightweight framework, micro-virtualization automates the process of optimizing resources, safely allowing system utilization to be increased. In more detail, micro-virtualization is designed to:

  • Achieve more application processing power per system, aids server consolidation, resulting in fewer systems needed for given workload, and reduces data center power demands (system power, cooling, and space).
  • Maintain kernel level task priorities so that resources are steered to high-value work.
  • Ensure SLA can be met though simple and easy to define policies.

The support of SLAs is particularly important. Multi-tenancy invariably grows with core counts, either via cloud-like unrelated users or within the enterprise, where various departments or projects end up sharing systems to a greater degree. These multi-tenants pay in some manner, either directly or via budget contribution, so they demand to get what they pay for. Therefore, consistent and predictable results are important, i.e., a user can’t complete processing in X time on one iteration and 2X on the next iteration.

Micro-virtualization provides mechanisms that ensure that specific applications, users, and projects receive the CPU and memory resources that have been paid for or committed to. Specifically, administrators can declare CPU and memory percentages that guarantee resource levels.

Within the kernel, multi-tenant/multi-user/multi-project work falls subject to equal OS time-slice behavior. That’s true even though the work, which ranges from high-cost applications to open-source, is not all equal.  Users can easily run into situations where high-value work is slowed by low-value work. Micro-virtualization provides tools that allow for discrete task prioritization that can predictably steer resource allocations.

Within an enterprise there may be many iterations of an application running, but each iteration may have unique value. Consider a chip-design environment where multiple next-gen processors are under development. The soon-to-be-released processor has more enterprise value than a design to be completed in three years. Micro-virtualization easily accommodates resource steering to the high value work, even to the extent that work can be flagged as having exclusive access to system resources — think of a chip tape-out that needs last minute fixes, or rendering where a movie is about to be released and maximum performance is required.

The eXludus solution also promises to open up HPC to virtualization. Legacy server virtualization has not been very successful in these situations as the heavyweight hypervisor approach has high overhead costs. Micro-virtualization is truly lightweight, in the range of 1 to 2 percent overhead, whereas full server virtualization may entail an 18 to 20 penalty in these scenarios. And where full virtualization complexity is administratively cumbersome, micro-virtualization is simple and literally can be deployed within hours.  

A current limitation of eXludus micro-virtualization is that all work must be run within a single OS environment, in this case Linux. And the solution does not yield an easily predictable or consistent performance gain. Throughput increases are a function of the workload, which users may find difficult to comprehend.

In aggregate though, micro-virtualization as a means to effectively segment multicore systems and extract maximum efficiencies appears to be an idea whose time has come. Service efficiency is improved and resources are more accurately steered to the highest value tasks in support of business objectives.

—–

Wolfgang Gentzsch is an independent HPC consultant for cluster, grid, and cloud computing, technologies and a member of the Board of Directors for eXludus Technologies.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Challenges Face Astroinformatics as It Sorts Through the Stars

June 15, 2018

You might have seen one of those YouTube videos: they begin on Earth, slowly zooming out to the Moon, the Solar System, the Milky Way, beyond – and suddenly, you’re looking at trillions of stars. It’s a lot to take Read more…

By Oliver Peckham

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

SDSC Researchers Use Machine Learning to More Accurately Model Water

June 13, 2018

Water – H2O – is a simple but fascinating (and useful) compound. San Diego Supercomputing Center researchers used machine learning techniques to develop models for simulations of water with “unprecedented accuracy. Read more…

By Staff

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Banks Boost Infrastructure to Tackle GDPR

As banks become more digital and data-driven, their IT managers are challenged with fast growing data volumes and lines-of-businesses’ (LoBs’) seemingly limitless appetite for analytics. Read more…

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Exascale USA – Continuing to Move Forward

June 6, 2018

The end of May 2018, saw several important events that continue to advance the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) for the United Read more…

By Alex R. Larzelere

Exascale for the Rest of Us: Exaflops Systems Capable for Industry

June 6, 2018

Enterprise advanced scale computing – or HPC in the enterprise – is an entity unto itself, situated between (and with characteristics of) conventional enter Read more…

By Doug Black

Fracas in Frankfurt: ISC18 Cluster Competition Teams Unveiled

June 6, 2018

The Student Cluster Competition season heats up with the seventh edition of the ISC Student Cluster Competition, slated to begin on June 25th in Frankfurt, Germ Read more…

By Dan Olds

Japan Starts Up 3-Petaflops ‘ATERUI II’ Cray Supercomputer

June 5, 2018

The world's most powerful supercomputer for astrophysical calculations has begun operations in Japan. The announcement comes from the National Astronomical Obse Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This