AMD : The Integration Revolution?

By Nebojsa Novakovic

May 7, 2012

By Nebojsa Novakovic

The potential–and challenges of multi-core processing

In recent years, microprocessor designers began hitting the limitations of the single-core architecture. So they made the shift to power-efficient multi-core designs. Now they’re running up against the limitations of this format, as programming multi-core processors becomes increasingly complex. One path forward is to synergistically combine the potential of both CPU and GPU units. But integrating two very high powered processing units with somewhat differing performance and bandwidth requirements can pose interesting challenges to the overall system architecture.

AMD is proposing to solve these issues with a combination of hardware solutions and system-level programming tools, ushering in a new era of what has become known as heterogeneous computing.

AMD Fig. 1 

The promise of Heterogeneous System Architecture (HSA)

While it has been recognized for some time that GPUs can be used to do parallel processing, the programmer’s task has been difficult if not extraordinary. That’s where AMD’s Heterogeneous System Architecture (HSA) comes in. HSA enables a new way to program applications using the GPU that can make it easier for mainstream programmers. AMD’s HSA is a full solution approach, enabling mainstream programmers to write parallel processing code as easily for the GPU as the CPU. And in some cases, the code may be able to execute on either the CPU or GPU, based on the system’s resources.

One way HSA can help solve the problem is by providing a unified address space for the CPU and GPU. With HSA, GPUs support the same page tables x86 CPUs use for mapping program memory pages to physical memory. Now GPUs can use a much larger memory map and, more importantly, a pointer is usually the same for code running on the CPU and code running on the GPU. The latter allows one copy of data to exist in memory and both the CPU and GPU can act upon it. The programmer doesn’t have to manage two or more copies of the same data. This design also helps improve performance because it is no longer necessary to make copies and keep them synchronized.

AMD is proposing an open platform architecture for HSA with published specifications. HSA will have a virtual ISA known as HSAIL (HSA Intermediate Language), a memory model, and a system specification. AMD is working with hardware, operating system, tools, and application companies to form an HSA foundation to guide the architectural development into the future.

Among the programmers I talk to, there is a great deal of excitement in being able to obtain that huge untapped performance potential from GPUs via HSA in an easy and transparent way, something that was difficult, if not impossible, until now

Combining the CPU and GPU: Bringing the APU to life

A hardware merger of the CPU and GPU, AMD’s Accelerated Processing Units (APUs) provide streamlined hardware-level integration of these two processing units. By the time of the AMD Fusion12 Developer Summit (June 11-14, 2012), AMD will have introduced “Trinity,” a second generation APU in market, along with the two first generation products AMD A-Series and AMD C and E-Series APUs formerly codenamed “Llano,” and “Brazos.”

The “Brazos”-based AMD C and E-Series APU combines an ultra-low power dual core CPU with an entry-level AMD Radeon™ GPU. Variants of these APUs are targeted at tablets, fanless notebooks, entry-level notebooks, and entry-level desktops. The “Llano”-based AMD A-Series APU combines two or four “Husky” CPU cores with a mid-range, AMD Radeon™ HD 6500-series discrete-class GPU. Husky cores are the next generation of the cores from the popular AMD Phenom™ processor series of AMD CPUs. The “Trinity”-based AMD A-Series variants target mainstream notebooks and mainstream desktops with good CPU performance and industry leading integrated graphics and video capabilities.

All three AMD APU families benefit from the greatly increased speed of communications between the CPU and GPU. Both the bandwidth and the latency for response are improved. All support DDR3 memory, DirectX 11 graphics, and have dedicated hardware for video playback. AMD C and E-Series has a single memory channel while AMD A-Series for both Llano and Trinity have dual memory channel support. To fully handle the memory bandwidth requirements of the larger GPU units in the A-Series of Llano and Trinity, DDR3 memory speeds up to 1600 and 1866 are supported, respectively.

The APU impact on system design: board, memory, graphics, and form factor

For a mainstream PC solution, the APU enables you to fit a quad core DirectX 11 3D gaming system with all the familiar features into a form-factor smaller than a Mini-ITX. Even if you add PCIe® expansion slots, there is still plenty of space for a Mini-ITX format solution; even a Pico-ITX form factor should be possible.

This opens up a design choice: One option is to stick with the default spec. The result will be smaller than most current TV set top boxes with near zero noise. The other choice is to stick with the Mini-ITX format, but provide performance enhancements through the use of a better cooling solution (to enable overclocking), adding faster memory options, and adding AMD Radeon™ Dual Graphics.

There were numerous online website reviews of the first generation APU desktop platforms discussing the various memory choices. Based on the current product performance and return on the memory speed investment, DDR3-1866 CL9 DIMMs are the best memory choice providing an outstanding performance per dollar. For the second generation APU, a DDR3-2133 CL10 or better memory should strike a good balance.

In summary, the AMD APU’s integration, balanced performance, expandability, and power usage enables new ultra-compact form factors for complete systems. The power consumption savings that can come from running a near teraflop of performance with less than 100W power can enable much “greener” high-end machines–up to the supercomputer range.

The APU impact in tablet and netbook space

The lowest power version of the AMD E-Series APU is suitable for an x86 tablet, which can run Windows 8 and avoid the dependence on application stores and such centralized resources. The added CPU and graphics horsepower of the APU enables new, productive form factors for tablets. How about a 11” or 12” inch full HD+ tablet with 16:10, 1920×1200 or even 3:2, 1920×1280 screen? Not only are these far more productive than movie screen 16:9 displays, but oriented in portrait mode they can emulate a printed page. Future ultrathin versions of quad-core AMD APUs in newer processes are designed to enable ultrahigh resolution 3D tablets that can also substitute for a proper PC.

Taking the APU further

A powerful GPU closely tied to the CPU not only benefits 3D graphics applications, but also applications with intense parallel computation. Examples include ultrafast large spreadsheet calculation, database manipulation, and media creation. On the larger scale, an APU-powered petaflop machine spread could enable more affordable supercomputing and large data analysis for many more users. An APU-based supercomputer could achieve its floating-point performance rating at one-third the power of the usual purely x86 CPU-based one, a massive advantage when combined with the right software.

Looking forward

The AMD APU and HSA approaches are revolutionary to programmers and users. AMD architecture changes not just the PC processor architecture, but the system design. That may not be obvious when looking at the first generation APUs. However, as AMD further develops APUs the benefit is bound to become obvious.

The HSA programming model will open new worlds of opportunities for the programmers, challenging them to harness the new performance potential. The more intricate interdependencies and benefits from that integration also will require system builders and designers to put more thought into maximizing their systems’ competitiveness. Over time, the benefits of the APU should spread top to bottom, from the supercomputer to the smartphone.

About the author: Based in Singapore, Nebojsa Novakovic is a strategic advisor to VR-Zone.com, Asia Pacific editor for TheInquirer.net, and frequently writes on high-end computing, system architecture, processors, 3-D graphics and related subjects.

Ready to learn more? AMD’s Fusion12 Developer Summit unites the industry’s experts in the world of heterogeneous computing. Held June 11-14, 2012, in Bellevue, Washington, the event provides deep, actionable content across ten tracks, covering heterogeneous computing as it relates to multimedia, graphics, cloud computing, security, big data, and more. Whether you’re responsible for planning or development, you’ll find the tools, knowledge, and resources you need to take advantage of this new era of computing. Learn more at amd.com/afds.

 

 

This paper is sponsored by AMD
© 2012 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other names are for identification purposes only and may be trademarks of their respective owners.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Google’s Bill Magro, an HPCwire Person to Watch in 2021

June 11, 2021

Last Fall Bill Magro joined Google as CTO of HPC, a newly created position, after two decades at Intel, where he was responsible for the company's HPC strategy. This interview was conducted by email at the beginning of A Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their correspondingly powerful cooling systems. As a result, these Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, with the U.K.-based Cambridge Quantum Computing (CQC), which Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled its in-person component with a couple months’ notice, ISC Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

AWS Solution Channel

Building highly-available HPC infrastructure on AWS

Reminder: You can learn a lot from AWS HPC engineers by subscribing to the HPC Tech Short YouTube channel, and following the AWS HPC Blog channel. Read more…

Space Weather Prediction Gets a Supercomputing Boost

June 9, 2021

Solar winds are a hot topic in the HPC world right now, with supercomputer-powered research spanning from the Princeton Plasma Physics Laboratory (which used Oak Ridge’s Titan system) to University College London (which used resources from the DiRAC HPC facility). One of the larger... Read more…

A Carbon Crisis Looms Over Supercomputing. How Do We Stop It?

June 11, 2021

Supercomputing is extraordinarily power-hungry, with many of the top systems measuring their peak demand in the megawatts due to powerful processors and their c Read more…

Honeywell Quantum and Cambridge Quantum Plan to Merge; More to Follow?

June 10, 2021

Earlier this week, Honeywell announced plans to merge its quantum computing business, Honeywell Quantum Solutions (HQS), which focuses on trapped ion hardware, Read more…

ISC21 Keynoter Xiaoxiang Zhu to Deliver a Bird’s-Eye View of a Changing World

June 10, 2021

ISC High Performance 2021 – once again virtual due to the ongoing pandemic – is swiftly approaching. In contrast to last year’s conference, which canceled Read more…

Xilinx Expands Versal Chip Family With 7 New Versal AI Edge Chips

June 10, 2021

FPGA chip vendor Xilinx has been busy over the last several years cranking out its Versal AI Core, Versal Premium and Versal Prime chip families to fill customer compute needs in the cloud, datacenters, networks and more. Now Xilinx is expanding its reach to the booming edge... Read more…

What is Thermodynamic Computing and Could It Become Important?

June 3, 2021

What, exactly, is thermodynamic computing? (Yes, we know everything obeys thermodynamic laws.) A trio of researchers from Microsoft, UC San Diego, and Georgia Tech have written an interesting viewpoint in the June issue... Read more…

AMD Introduces 3D Chiplets, Demos Vertical Cache on Zen 3 CPUs

June 2, 2021

At Computex 2021, held virtually this week, AMD showcased a new 3D chiplet architecture that will be used for future high-performance computing products set to Read more…

Nvidia Expands Its Certified Server Models, Unveils DGX SuperPod Subscriptions

June 2, 2021

Nvidia is busy this week at the virtual Computex 2021 Taipei technology show, announcing an expansion of its nascent Nvidia-certified server program, a range of Read more…

Using HPC Cloud, Researchers Investigate the COVID-19 Lab Leak Hypothesis

May 27, 2021

At the end of 2019, strange pneumonia cases started cropping up in Wuhan, China. As Wuhan (then China, then the world) scrambled to contain what would, of cours Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire