Thomas Sterling: ‘I Think We Will Never Reach Zettaflops’

By Nicole Hemsoth

May 7, 2012

As supercomputing makes its way through the petascale era, the future of the technology has never seemed so uncertain.  HPC veteran Thomas Sterling, Professor of Informatics & Computing at Indiana University, takes us through some of the most critical  developments in high performance computing, explaining why the transition to exascale is going to be very different than the ones in the past and how the United States is losing its leadership in HPC innovation.

HPCwire: Do you have a sense that other regions, China and Europe in particular, are closing the HPC leadership gap that the US has enjoyed for so long? If so, do you think this is more the result of technology democratization rather than government policy choices?

Thomas Sterling: It is clear that other regions are not closing the HPC leadership gap; they are widening it. Through a series of actions in both the EU and Asia the momentum is shifting overseas where once it was entrenched within the US. The Europeans through their EESI and forthcoming EESI2 efforts are making dramatic strides in planning towards a EU-dominant exascale trajectory. The Russians as well are putting in to place a tightly coordinated exascale program combining Moscow State University, T-Platforms, and government, not simply to duplicate prior US methods but to innovate beyond them.

Asia today represents the biggest surge in top performing machines with the 10 petaflops Kei machine in Kobe Japan and the 2.6 petaflops Tianhe-1A system in Tianjin. Perhaps more defining, if somewhat less powerful, is the Sunway BlueLight, a petaflops-class machine built entirely of Chinese microprocessors. Less clear is the degree to which all of these machines are being applied effectively to end-purpose applications, but it is only a matter of time until these strengths push other science and industry objectives beyond the US sphere of influence.

The reason is a mix of both technology democratization and government policy. Neither is working in favor of the US. While the US will be deploying 10 and 20 petaflops machines over the next couple of years, it is clear that the momentum in innovation is off-shore. What may reverse this distressing trend is the new — no pun intended — energy at DOE in driving towards exascale through innovative advancements in software, programming methods, application parallel algorithms, and eventually at least to some degree in hardware.

HPCwire: How is the transition to exascale different from the other HPC milestone transitions — terascale and petascale — that we’ve passed through?

Sterling: The transition to exascale is different from the two previous tri-decade transitions through which we have passed, and in two fundamental ways: one related to the past, and the other the future. By the early 1990’s, the “killer micro,” cheap DRAM, and the emergence of system area networks manifest as MPPs (for example, Intel Touchstone Delta) and commodity clusters (for example, my own Beowulf project). These combined with the foundational Communicating Sequential Processes execution model reflected by the message-passing programming model established a formula to match weak-scaling workloads to VLSI component technologies.

At about 11 year intervals this delivered teraflops-scale computing, ASCI Red in 1999, and petaflops-scale, Roadrunner in 2008. However, this highly successful strategy is unlikely to facilitate the realization of exascale computing, except perhaps for some specialized and carefully crafted workloads. This is because the means adopted by this approach to address key factors of performance degradation will no longer prove adequate.

For example, the fine-grained instruction level parallelism and coarse-grained concurrent processes will not provide sufficient efficient parallelism to meet the billion-plus-way parallelism requirement of exascale. Static resource allocation and task scheduling is insufficient to provide the necessary efficiency or scalability as well as the introspective techniques required for reliability and power management. I expect the need for new programming models, which may include but not be limited to variations of previous techniques, will be essential for communicating between user applications and underlying execution systems.

As I have asserted in the past, a new execution model as an embodiment of a paradigm shift will drive this transition from old systems to new. We have done this before in the case of scalar to vector and SIMD, and again from these to message passing, MPPs, and clusters. We are now simply — or not so simply — facing another phase shift in HPC system programming, structure, and operation.

Exascale is also different because unlike previous milestones, it is unlikely that we will face yet another one in the future. These words may be thrown back in my face, but I think we will never reach zettaflops, at least not by doing discrete floating point operations. We are reaching the anvil of the technology S-curve and will be approaching an asymptote of single program performance due to a combination of factors including atomic granularity at nanoscale.

Of course I anticipate something else will be devised that is beyond my imagination, perhaps something akin to quantum computing, metaphoric computing, or biological computing. But whatever it is, it won’t be what we’ve been doing for the last seven decades. That is another unique aspect of the exascale milestone and activity. For a number, I’m guessing about 64 exaflops to be the limit, depending on the amount of pain we are prepared to tolerate.

HPCwire: What’s the biggest hardware challenge to attain exascale computing?

Sterling: The usual response to this question is either “power” or “resilience” and these are certainly critical challenges to attaining exascale. Depending on the analysis of choice, without innovative ways of managing vertical and lateral data movement power estimates based on anticipated technology trends suggest an order of magnitude greater power demand than is considered practical. Single point failure modes of systems comprising hundreds of millions of cores will exhibit mean-time-to-interrupt on the order of minutes or many seconds, much less than the expected time to service a checkpoint or restart cycle using conventional methods.

While both are clearly important, I think the biggest hardware challenge is architecture. This may surprise many of our colleagues because there is a general expectation that the system architecture is likely to be an evolutionary extension of the current mix of multicore sockets and GPU accelerators. This view is driven by the number one concern, which is parallelism and the need to expose and exploit it. Not only will the system architecture have to provide sufficient hardware concurrency of on the order of a billion or more simultaneous actions for the throughput requirement, it will have to use more of it as a latency mitigating method requiring additional architecture change.

Further, it will have to incorporate mechanisms to reduce overheads in order to make effective use of finer granularity tasks (e.g., lightweight user threads) such as the instantiation of remote actions. Support for advanced forms of global address spaces, their management, and address translation will be required in support of randomly distributed global data (e.g., dynamic graphs). New mechanisms for efficient semantically rich synchronization and continuation (control object) migration to manage locality of control will be part of future designs if they are to succeed at unprecedented scale.

Additional hardware mechanisms will be required for fault tolerance including error detection, isolation, in-memory checkpointing, and recovery through reconfiguration. Power reduction will demand active sensor and control hardware mechanisms to continuously adjust energy usage based on application demands. New processor cores and their relationship to memory (for example, processor in memory) for superior bandwidth, reduced latency, and lower power will further drive hardware innovation needs.

HPCwire: How about software challenges?

Sterling: Every advance in hardware will require corresponding changes in software. But the software challenge extends beyond this supporting role. Perhaps most critical is the development of performance-oriented runtime system software for scalable computing. Such software will include dynamic scheduling for lightweight user threads, message-driven computation for moving the work to the data, global address space management, and again efficient support for powerful synchronization objects like the futures construct to eliminate the use of global barriers and enable asynchrony control through dynamic adaptation.

The ParalleX execution model, as well as the HPX-3 prototype runtime system and the ETI SWARM that embody many of its principles, are two examples that support these goals, even on today’s conventional parallel distributed system architectures. But they are only a beginning as the needs for a new generation of fault tolerance and energy management control will be required, too. With a billion cores, their memory hierarchy, and layered communications, a new scalable and robust operating system will be needed. A new software architecture is required to provide a context in which both runtime and operating system need to be mutually designed.

One major challenge is a new interface and protocol definition between the runtime and OS that enables a unique dynamic for a symbiotic relationship of mutual and interactive support. The presence of a performance runtime system also imposes new demands and class of functionality on future compilers that now play a very different role given the existence of a runtime and the exploitation of introspective techniques. These changes percolate up to affect the need for new application programming interfaces. In combination this suggests possibly an entirely new software stack for exascale computing implying that it is not too early to be investing in and conducting research in these areas already.

HPCwire: Do you think the industry will provide suitable manycore hardware and software products that can be applied to high performance computing — for exascale, but also for HPC in general?

Sterling: This is a complicated question with the answer depending on what is meant by “the industry,” “suitable,” and “products.” I am not sanguine about the current path and offerings as incrementally extended to exascale, and industry roadmaps that assume this approach will have shrinking impact on the total range of problems that will eventually apply exascale capability to their solution space. I don’t think we as a community know enough at this point to establish what the right hardware/software machine is for general purpose exascale or even if such a system is possible within the constraints of parallelism, energy, and reliability.

Therefore claims that particular vendors have it under control are of limited value at best. The design space is just too complicated, prior methods for scaling to Moore’s Law apply to a decreasing degree, whole new modalities demanding advanced runtime components are yet to be derived but are essential, and generality is already diminishing to a worrisome degree for such assertions to have meaningful validity.

Nonetheless, industry will deliver the systems that will be used in the next decade. There is no other choice. It is clear that vendors would prefer not to have to retool and this is true for users as well. To do so will involve a degree of disruption that would be best avoided if it were possible. And for a portion of the overall workload, even at exascale, this may prove to be possible. But such systems are a placebo to an ailing HPC community that if not in triage, is already showing symptoms of underlying conditions that require attention.

The big hurdle is when industry fully embraces the need to address the system wide parallel computing challenge at the processor core level, refactors the physical and logical relationship between cores and memory banks for minimum latency and maximum bandwidth, and transitions from static to dynamic execution models and system software. I do expect this to happen but not without strong push from the user mission-critical agencies.

Thomas Sterling will be delivering the Wednesday keynote at this year’s International Supercomputing Conference (ISC’12), which will take place in Hamburg, Germany from June 17-21. His presentation will examine the achievements over the past 12 months in high performance computing.

Related Articles

The Power to Flop

The Bumpy Road to Exascale: A Q&A with Thomas Sterling

Taking a Disruptive Approach to Exascale

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputers Streamline Prediction of Dangerous Arrhythmia

June 2, 2020

Heart arrhythmia can prove deadly, contributing to the hundreds of thousands of deaths from cardiac arrest in the U.S. every year. Unfortunately, many of those arrhythmia are induced as side effects from various medicati Read more…

By Staff report

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of computing capability in support of data analysis and AI workload Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been instrumental to AMD’s datacenter market resurgence. Nanomet Read more…

By Doug Black

Supercomputer-Powered Protein Simulations Approach Lab Accuracy

June 1, 2020

Protein simulations have dominated the supercomputing conversation of late as supercomputers around the world race to simulate the viral proteins of COVID-19 as accurately as possible and simulate potential bindings in t Read more…

By Oliver Peckham

HPC Career Notes: June 2020 Edition

June 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

AWS Solution Channel

Computational Fluid Dynamics on AWS

Over the past 30 years Computational Fluid Dynamics (CFD) has grown to become a key part of many engineering design processes. From aircraft design to modelling the blood flow in our bodies, the ability to understand the behaviour of fluids has enabled countless innovations and improved the time to market for many products. Read more…

Supercomputer Modeling Shows How COVID-19 Spreads Through Populations

May 30, 2020

As many states begin to loosen the lockdowns and stay-at-home orders that have forced most Americans inside for the past two months, researchers are poring over the data, looking for signs of the dreaded second peak of t Read more…

By Oliver Peckham

Indiana University to Deploy Jetstream 2 Cloud with AMD, Nvidia Technology

June 2, 2020

Indiana University has been awarded a $10 million NSF grant to build ‘Jetstream 2,’ a cloud computing system that will provide 8 aggregate petaflops of comp Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

COVID-19 HPC Consortium Expands to Europe, Reports on Research Projects

May 28, 2020

The COVID-19 HPC Consortium, a public-private effort delivering free access to HPC processing for scientists pursuing coronavirus research – some utilizing AI Read more…

By Doug Black

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

IBM Boosts Deep Learning Accuracy on Memristive Chips

May 27, 2020

IBM researchers have taken another step towards making in-memory computing based on phase change (PCM) memory devices a reality. Papers in Nature and Frontiers Read more…

By John Russell

Hats Over Hearts: Remembering Rich Brueckner

May 26, 2020

HPCwire and all of the Tabor Communications family are saddened by last week’s passing of Rich Brueckner. He was the ever-optimistic man in the Red Hat presiding over the InsideHPC media portfolio for the past decade and a constant presence at HPC’s most important events. Read more…

Nvidia Q1 Earnings Top Expectations, Datacenter Revenue Breaks $1B

May 22, 2020

Nvidia’s seemingly endless roll continued in the first quarter with the company announcing blockbuster earnings that exceeded Wall Street expectations. Nvidia Read more…

By Doug Black

Microsoft’s Massive AI Supercomputer on Azure: 285k CPU Cores, 10k GPUs

May 20, 2020

Microsoft has unveiled a supercomputing monster – among the world’s five most powerful, according to the company – aimed at what is known in scientific an Read more…

By Doug Black

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Contributors

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This