Thomas Sterling: ‘I Think We Will Never Reach Zettaflops’

By Nicole Hemsoth

May 7, 2012

As supercomputing makes its way through the petascale era, the future of the technology has never seemed so uncertain.  HPC veteran Thomas Sterling, Professor of Informatics & Computing at Indiana University, takes us through some of the most critical  developments in high performance computing, explaining why the transition to exascale is going to be very different than the ones in the past and how the United States is losing its leadership in HPC innovation.

HPCwire: Do you have a sense that other regions, China and Europe in particular, are closing the HPC leadership gap that the US has enjoyed for so long? If so, do you think this is more the result of technology democratization rather than government policy choices?

Thomas Sterling: It is clear that other regions are not closing the HPC leadership gap; they are widening it. Through a series of actions in both the EU and Asia the momentum is shifting overseas where once it was entrenched within the US. The Europeans through their EESI and forthcoming EESI2 efforts are making dramatic strides in planning towards a EU-dominant exascale trajectory. The Russians as well are putting in to place a tightly coordinated exascale program combining Moscow State University, T-Platforms, and government, not simply to duplicate prior US methods but to innovate beyond them.

Asia today represents the biggest surge in top performing machines with the 10 petaflops Kei machine in Kobe Japan and the 2.6 petaflops Tianhe-1A system in Tianjin. Perhaps more defining, if somewhat less powerful, is the Sunway BlueLight, a petaflops-class machine built entirely of Chinese microprocessors. Less clear is the degree to which all of these machines are being applied effectively to end-purpose applications, but it is only a matter of time until these strengths push other science and industry objectives beyond the US sphere of influence.

The reason is a mix of both technology democratization and government policy. Neither is working in favor of the US. While the US will be deploying 10 and 20 petaflops machines over the next couple of years, it is clear that the momentum in innovation is off-shore. What may reverse this distressing trend is the new — no pun intended — energy at DOE in driving towards exascale through innovative advancements in software, programming methods, application parallel algorithms, and eventually at least to some degree in hardware.

HPCwire: How is the transition to exascale different from the other HPC milestone transitions — terascale and petascale — that we’ve passed through?

Sterling: The transition to exascale is different from the two previous tri-decade transitions through which we have passed, and in two fundamental ways: one related to the past, and the other the future. By the early 1990’s, the “killer micro,” cheap DRAM, and the emergence of system area networks manifest as MPPs (for example, Intel Touchstone Delta) and commodity clusters (for example, my own Beowulf project). These combined with the foundational Communicating Sequential Processes execution model reflected by the message-passing programming model established a formula to match weak-scaling workloads to VLSI component technologies.

At about 11 year intervals this delivered teraflops-scale computing, ASCI Red in 1999, and petaflops-scale, Roadrunner in 2008. However, this highly successful strategy is unlikely to facilitate the realization of exascale computing, except perhaps for some specialized and carefully crafted workloads. This is because the means adopted by this approach to address key factors of performance degradation will no longer prove adequate.

For example, the fine-grained instruction level parallelism and coarse-grained concurrent processes will not provide sufficient efficient parallelism to meet the billion-plus-way parallelism requirement of exascale. Static resource allocation and task scheduling is insufficient to provide the necessary efficiency or scalability as well as the introspective techniques required for reliability and power management. I expect the need for new programming models, which may include but not be limited to variations of previous techniques, will be essential for communicating between user applications and underlying execution systems.

As I have asserted in the past, a new execution model as an embodiment of a paradigm shift will drive this transition from old systems to new. We have done this before in the case of scalar to vector and SIMD, and again from these to message passing, MPPs, and clusters. We are now simply — or not so simply — facing another phase shift in HPC system programming, structure, and operation.

Exascale is also different because unlike previous milestones, it is unlikely that we will face yet another one in the future. These words may be thrown back in my face, but I think we will never reach zettaflops, at least not by doing discrete floating point operations. We are reaching the anvil of the technology S-curve and will be approaching an asymptote of single program performance due to a combination of factors including atomic granularity at nanoscale.

Of course I anticipate something else will be devised that is beyond my imagination, perhaps something akin to quantum computing, metaphoric computing, or biological computing. But whatever it is, it won’t be what we’ve been doing for the last seven decades. That is another unique aspect of the exascale milestone and activity. For a number, I’m guessing about 64 exaflops to be the limit, depending on the amount of pain we are prepared to tolerate.

HPCwire: What’s the biggest hardware challenge to attain exascale computing?

Sterling: The usual response to this question is either “power” or “resilience” and these are certainly critical challenges to attaining exascale. Depending on the analysis of choice, without innovative ways of managing vertical and lateral data movement power estimates based on anticipated technology trends suggest an order of magnitude greater power demand than is considered practical. Single point failure modes of systems comprising hundreds of millions of cores will exhibit mean-time-to-interrupt on the order of minutes or many seconds, much less than the expected time to service a checkpoint or restart cycle using conventional methods.

While both are clearly important, I think the biggest hardware challenge is architecture. This may surprise many of our colleagues because there is a general expectation that the system architecture is likely to be an evolutionary extension of the current mix of multicore sockets and GPU accelerators. This view is driven by the number one concern, which is parallelism and the need to expose and exploit it. Not only will the system architecture have to provide sufficient hardware concurrency of on the order of a billion or more simultaneous actions for the throughput requirement, it will have to use more of it as a latency mitigating method requiring additional architecture change.

Further, it will have to incorporate mechanisms to reduce overheads in order to make effective use of finer granularity tasks (e.g., lightweight user threads) such as the instantiation of remote actions. Support for advanced forms of global address spaces, their management, and address translation will be required in support of randomly distributed global data (e.g., dynamic graphs). New mechanisms for efficient semantically rich synchronization and continuation (control object) migration to manage locality of control will be part of future designs if they are to succeed at unprecedented scale.

Additional hardware mechanisms will be required for fault tolerance including error detection, isolation, in-memory checkpointing, and recovery through reconfiguration. Power reduction will demand active sensor and control hardware mechanisms to continuously adjust energy usage based on application demands. New processor cores and their relationship to memory (for example, processor in memory) for superior bandwidth, reduced latency, and lower power will further drive hardware innovation needs.

HPCwire: How about software challenges?

Sterling: Every advance in hardware will require corresponding changes in software. But the software challenge extends beyond this supporting role. Perhaps most critical is the development of performance-oriented runtime system software for scalable computing. Such software will include dynamic scheduling for lightweight user threads, message-driven computation for moving the work to the data, global address space management, and again efficient support for powerful synchronization objects like the futures construct to eliminate the use of global barriers and enable asynchrony control through dynamic adaptation.

The ParalleX execution model, as well as the HPX-3 prototype runtime system and the ETI SWARM that embody many of its principles, are two examples that support these goals, even on today’s conventional parallel distributed system architectures. But they are only a beginning as the needs for a new generation of fault tolerance and energy management control will be required, too. With a billion cores, their memory hierarchy, and layered communications, a new scalable and robust operating system will be needed. A new software architecture is required to provide a context in which both runtime and operating system need to be mutually designed.

One major challenge is a new interface and protocol definition between the runtime and OS that enables a unique dynamic for a symbiotic relationship of mutual and interactive support. The presence of a performance runtime system also imposes new demands and class of functionality on future compilers that now play a very different role given the existence of a runtime and the exploitation of introspective techniques. These changes percolate up to affect the need for new application programming interfaces. In combination this suggests possibly an entirely new software stack for exascale computing implying that it is not too early to be investing in and conducting research in these areas already.

HPCwire: Do you think the industry will provide suitable manycore hardware and software products that can be applied to high performance computing — for exascale, but also for HPC in general?

Sterling: This is a complicated question with the answer depending on what is meant by “the industry,” “suitable,” and “products.” I am not sanguine about the current path and offerings as incrementally extended to exascale, and industry roadmaps that assume this approach will have shrinking impact on the total range of problems that will eventually apply exascale capability to their solution space. I don’t think we as a community know enough at this point to establish what the right hardware/software machine is for general purpose exascale or even if such a system is possible within the constraints of parallelism, energy, and reliability.

Therefore claims that particular vendors have it under control are of limited value at best. The design space is just too complicated, prior methods for scaling to Moore’s Law apply to a decreasing degree, whole new modalities demanding advanced runtime components are yet to be derived but are essential, and generality is already diminishing to a worrisome degree for such assertions to have meaningful validity.

Nonetheless, industry will deliver the systems that will be used in the next decade. There is no other choice. It is clear that vendors would prefer not to have to retool and this is true for users as well. To do so will involve a degree of disruption that would be best avoided if it were possible. And for a portion of the overall workload, even at exascale, this may prove to be possible. But such systems are a placebo to an ailing HPC community that if not in triage, is already showing symptoms of underlying conditions that require attention.

The big hurdle is when industry fully embraces the need to address the system wide parallel computing challenge at the processor core level, refactors the physical and logical relationship between cores and memory banks for minimum latency and maximum bandwidth, and transitions from static to dynamic execution models and system software. I do expect this to happen but not without strong push from the user mission-critical agencies.

Thomas Sterling will be delivering the Wednesday keynote at this year’s International Supercomputing Conference (ISC’12), which will take place in Hamburg, Germany from June 17-21. His presentation will examine the achievements over the past 12 months in high performance computing.

Related Articles

The Power to Flop

The Bumpy Road to Exascale: A Q&A with Thomas Sterling

Taking a Disruptive Approach to Exascale

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Simulating Car Crashes with Supercomputers – and Lego

October 18, 2019

It’s an experiment many of us have carried out at home: crashing two Lego creations into each other, bricks flying everywhere. But for the researchers at the General German Automobile Club (ADAC) – which is comparabl Read more…

By Oliver Peckham

NASA Uses Deep Learning to Monitor Solar Weather

October 17, 2019

Solar flares may be best-known as sci-fi MacGuffins, but those flares – and other space weather – can have serious impacts on not only spacecraft and satellites, but also on Earth-based systems such as radio communic Read more…

By Oliver Peckham

Federated Learning Applied to Cancer Research

October 17, 2019

The ability to share and analyze data while protecting patient privacy is giving medical researchers a new tool in their efforts to use what one vendor calls “federated learning” to train models based on diverse data Read more…

By George Leopold

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departure from past practice, the NSB has divided the 2020 S&E Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

HPE Extreme Performance Solutions

Intel FPGAs: More Than Just an Accelerator Card

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

How Do We Power the New Industrial Revolution?

[Attend the IBM LSF, HPC & AI User Group Meeting at SC19 in Denver on November 19!]

Almost everyone is talking about artificial intelligence (AI). Read more…

What’s New in HPC Research: Rabies, Smog, Robots & More

October 14, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

NSB 2020 S&E Indicators Dig into Workforce and Education

October 16, 2019

Every two years the National Science Board is required by Congress to issue a report on the state of science and engineering in the U.S. This year, in a departu Read more…

By John Russell

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Summit Simulates Braking – on Mars

October 14, 2019

NASA is planning to send humans to Mars by the 2030s – and landing on the surface will be considerably trickier than landing a rover like Curiosity. To solve Read more…

By Staff report

Trovares Drives Memory-Driven, Property Graph Analytics Strategy with HPE

October 10, 2019

Trovares, a high performance property graph analytics company, has partnered with HPE and its Superdome Flex memory-driven servers on a cybersecurity capability the companies say “routinely” runs near-time workloads on 24TB-capacity systems... Read more…

By Doug Black

Intel, Lenovo Join Forces on HPC Cluster for Flatiron

October 9, 2019

An HPC cluster with deep learning techniques will be used to process petabytes of scientific data as part of workload-intensive projects spanning astrophysics to genomics. AI partners Intel and Lenovo said they are providing... Read more…

By George Leopold

Optimizing Offshore Wind Farms with Supercomputer Simulations

October 9, 2019

Offshore wind farms offer a number of benefits; many of the areas with the strongest winds are located offshore, and siting wind farms offshore ameliorates many of the land use concerns associated with onshore wind farms. Some estimates say that, if leveraged, offshore wind power... Read more…

By Oliver Peckham

Harvard Deploys Cannon, New Lenovo Water-Cooled HPC Cluster

October 9, 2019

Harvard's Faculty of Arts & Sciences Research Computing (FASRC) center announced a refresh of their primary HPC resource. The new cluster, called Cannon after the pioneering American astronomer Annie Jump Cannon, is supplied by Lenovo... Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This