Thomas Sterling: ‘I Think We Will Never Reach Zettaflops’

By Nicole Hemsoth

May 7, 2012

As supercomputing makes its way through the petascale era, the future of the technology has never seemed so uncertain.  HPC veteran Thomas Sterling, Professor of Informatics & Computing at Indiana University, takes us through some of the most critical  developments in high performance computing, explaining why the transition to exascale is going to be very different than the ones in the past and how the United States is losing its leadership in HPC innovation.

HPCwire: Do you have a sense that other regions, China and Europe in particular, are closing the HPC leadership gap that the US has enjoyed for so long? If so, do you think this is more the result of technology democratization rather than government policy choices?

Thomas Sterling: It is clear that other regions are not closing the HPC leadership gap; they are widening it. Through a series of actions in both the EU and Asia the momentum is shifting overseas where once it was entrenched within the US. The Europeans through their EESI and forthcoming EESI2 efforts are making dramatic strides in planning towards a EU-dominant exascale trajectory. The Russians as well are putting in to place a tightly coordinated exascale program combining Moscow State University, T-Platforms, and government, not simply to duplicate prior US methods but to innovate beyond them.

Asia today represents the biggest surge in top performing machines with the 10 petaflops Kei machine in Kobe Japan and the 2.6 petaflops Tianhe-1A system in Tianjin. Perhaps more defining, if somewhat less powerful, is the Sunway BlueLight, a petaflops-class machine built entirely of Chinese microprocessors. Less clear is the degree to which all of these machines are being applied effectively to end-purpose applications, but it is only a matter of time until these strengths push other science and industry objectives beyond the US sphere of influence.

The reason is a mix of both technology democratization and government policy. Neither is working in favor of the US. While the US will be deploying 10 and 20 petaflops machines over the next couple of years, it is clear that the momentum in innovation is off-shore. What may reverse this distressing trend is the new — no pun intended — energy at DOE in driving towards exascale through innovative advancements in software, programming methods, application parallel algorithms, and eventually at least to some degree in hardware.

HPCwire: How is the transition to exascale different from the other HPC milestone transitions — terascale and petascale — that we’ve passed through?

Sterling: The transition to exascale is different from the two previous tri-decade transitions through which we have passed, and in two fundamental ways: one related to the past, and the other the future. By the early 1990’s, the “killer micro,” cheap DRAM, and the emergence of system area networks manifest as MPPs (for example, Intel Touchstone Delta) and commodity clusters (for example, my own Beowulf project). These combined with the foundational Communicating Sequential Processes execution model reflected by the message-passing programming model established a formula to match weak-scaling workloads to VLSI component technologies.

At about 11 year intervals this delivered teraflops-scale computing, ASCI Red in 1999, and petaflops-scale, Roadrunner in 2008. However, this highly successful strategy is unlikely to facilitate the realization of exascale computing, except perhaps for some specialized and carefully crafted workloads. This is because the means adopted by this approach to address key factors of performance degradation will no longer prove adequate.

For example, the fine-grained instruction level parallelism and coarse-grained concurrent processes will not provide sufficient efficient parallelism to meet the billion-plus-way parallelism requirement of exascale. Static resource allocation and task scheduling is insufficient to provide the necessary efficiency or scalability as well as the introspective techniques required for reliability and power management. I expect the need for new programming models, which may include but not be limited to variations of previous techniques, will be essential for communicating between user applications and underlying execution systems.

As I have asserted in the past, a new execution model as an embodiment of a paradigm shift will drive this transition from old systems to new. We have done this before in the case of scalar to vector and SIMD, and again from these to message passing, MPPs, and clusters. We are now simply — or not so simply — facing another phase shift in HPC system programming, structure, and operation.

Exascale is also different because unlike previous milestones, it is unlikely that we will face yet another one in the future. These words may be thrown back in my face, but I think we will never reach zettaflops, at least not by doing discrete floating point operations. We are reaching the anvil of the technology S-curve and will be approaching an asymptote of single program performance due to a combination of factors including atomic granularity at nanoscale.

Of course I anticipate something else will be devised that is beyond my imagination, perhaps something akin to quantum computing, metaphoric computing, or biological computing. But whatever it is, it won’t be what we’ve been doing for the last seven decades. That is another unique aspect of the exascale milestone and activity. For a number, I’m guessing about 64 exaflops to be the limit, depending on the amount of pain we are prepared to tolerate.

HPCwire: What’s the biggest hardware challenge to attain exascale computing?

Sterling: The usual response to this question is either “power” or “resilience” and these are certainly critical challenges to attaining exascale. Depending on the analysis of choice, without innovative ways of managing vertical and lateral data movement power estimates based on anticipated technology trends suggest an order of magnitude greater power demand than is considered practical. Single point failure modes of systems comprising hundreds of millions of cores will exhibit mean-time-to-interrupt on the order of minutes or many seconds, much less than the expected time to service a checkpoint or restart cycle using conventional methods.

While both are clearly important, I think the biggest hardware challenge is architecture. This may surprise many of our colleagues because there is a general expectation that the system architecture is likely to be an evolutionary extension of the current mix of multicore sockets and GPU accelerators. This view is driven by the number one concern, which is parallelism and the need to expose and exploit it. Not only will the system architecture have to provide sufficient hardware concurrency of on the order of a billion or more simultaneous actions for the throughput requirement, it will have to use more of it as a latency mitigating method requiring additional architecture change.

Further, it will have to incorporate mechanisms to reduce overheads in order to make effective use of finer granularity tasks (e.g., lightweight user threads) such as the instantiation of remote actions. Support for advanced forms of global address spaces, their management, and address translation will be required in support of randomly distributed global data (e.g., dynamic graphs). New mechanisms for efficient semantically rich synchronization and continuation (control object) migration to manage locality of control will be part of future designs if they are to succeed at unprecedented scale.

Additional hardware mechanisms will be required for fault tolerance including error detection, isolation, in-memory checkpointing, and recovery through reconfiguration. Power reduction will demand active sensor and control hardware mechanisms to continuously adjust energy usage based on application demands. New processor cores and their relationship to memory (for example, processor in memory) for superior bandwidth, reduced latency, and lower power will further drive hardware innovation needs.

HPCwire: How about software challenges?

Sterling: Every advance in hardware will require corresponding changes in software. But the software challenge extends beyond this supporting role. Perhaps most critical is the development of performance-oriented runtime system software for scalable computing. Such software will include dynamic scheduling for lightweight user threads, message-driven computation for moving the work to the data, global address space management, and again efficient support for powerful synchronization objects like the futures construct to eliminate the use of global barriers and enable asynchrony control through dynamic adaptation.

The ParalleX execution model, as well as the HPX-3 prototype runtime system and the ETI SWARM that embody many of its principles, are two examples that support these goals, even on today’s conventional parallel distributed system architectures. But they are only a beginning as the needs for a new generation of fault tolerance and energy management control will be required, too. With a billion cores, their memory hierarchy, and layered communications, a new scalable and robust operating system will be needed. A new software architecture is required to provide a context in which both runtime and operating system need to be mutually designed.

One major challenge is a new interface and protocol definition between the runtime and OS that enables a unique dynamic for a symbiotic relationship of mutual and interactive support. The presence of a performance runtime system also imposes new demands and class of functionality on future compilers that now play a very different role given the existence of a runtime and the exploitation of introspective techniques. These changes percolate up to affect the need for new application programming interfaces. In combination this suggests possibly an entirely new software stack for exascale computing implying that it is not too early to be investing in and conducting research in these areas already.

HPCwire: Do you think the industry will provide suitable manycore hardware and software products that can be applied to high performance computing — for exascale, but also for HPC in general?

Sterling: This is a complicated question with the answer depending on what is meant by “the industry,” “suitable,” and “products.” I am not sanguine about the current path and offerings as incrementally extended to exascale, and industry roadmaps that assume this approach will have shrinking impact on the total range of problems that will eventually apply exascale capability to their solution space. I don’t think we as a community know enough at this point to establish what the right hardware/software machine is for general purpose exascale or even if such a system is possible within the constraints of parallelism, energy, and reliability.

Therefore claims that particular vendors have it under control are of limited value at best. The design space is just too complicated, prior methods for scaling to Moore’s Law apply to a decreasing degree, whole new modalities demanding advanced runtime components are yet to be derived but are essential, and generality is already diminishing to a worrisome degree for such assertions to have meaningful validity.

Nonetheless, industry will deliver the systems that will be used in the next decade. There is no other choice. It is clear that vendors would prefer not to have to retool and this is true for users as well. To do so will involve a degree of disruption that would be best avoided if it were possible. And for a portion of the overall workload, even at exascale, this may prove to be possible. But such systems are a placebo to an ailing HPC community that if not in triage, is already showing symptoms of underlying conditions that require attention.

The big hurdle is when industry fully embraces the need to address the system wide parallel computing challenge at the processor core level, refactors the physical and logical relationship between cores and memory banks for minimum latency and maximum bandwidth, and transitions from static to dynamic execution models and system software. I do expect this to happen but not without strong push from the user mission-critical agencies.

Thomas Sterling will be delivering the Wednesday keynote at this year’s International Supercomputing Conference (ISC’12), which will take place in Hamburg, Germany from June 17-21. His presentation will examine the achievements over the past 12 months in high performance computing.

Related Articles

The Power to Flop

The Bumpy Road to Exascale: A Q&A with Thomas Sterling

Taking a Disruptive Approach to Exascale

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark No Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire