Novel Chip Technology to Power GRAPE-8 Supercomputer

By Michael Feldman

May 10, 2012

With the fastest supercomputers on the planet sporting multi-megawatt appetites, green HPC has become all the rage. The IBM Blue Gene/Q machine is currently number one in energy-efficient flops, but a new FPGA-like technology brought to market by semiconductor startup eASIC is providing an even greener computing solution. And one HPC project in Japan, known as GRAPE, is using the chips to power its newest supercomputer.

GRAPE, which stands for Gravity Pipe, is a Japanese computing project that is focused on astrophysical simulation. (More specifically, the application uses Newtonian physics to compute the interaction of particles in N-body systems). The project, which began in 1989, has gone through eight generations of hardware, all of which were built as special-purpose supercomputer systems.

Each of the GRAPE machines was powered by a custom-built chip, specifically designed to optimize the astrophysical calculations that form the basis of the simulation work. The special-purpose processors were hooked up as external accelerators, using more conventional CPU-based host systems, in the form or workstations or servers, to drive the application.

The first-generation machine, GRAPE-1, managed just 240 single precision megaflops in 1989. The following year, the team build a double precision processor, which culminated in the 40-megaflop GRAPE-2. In 1998, they fielded GRAPE-4, their first teraflop system. The most recently system, GRAPE-DR, was designed to be a petascale machine, although its TOP500 entry showed up in 2009 as an 84.5 teraflop cluster.

Even though the GRAPE team was able to squeeze a lot more performance out of specially built hardware than they would have using general-purpose HPC machinery, it’s an expensive proposition. Each GRAPE iteration was based on a different ASIC design, necessitating the costly and time-consuming process of chip design, verification, and production. And as transistor geometries shrunk, development costs soared.

As the GRAPE team at Hitotsubashi University and the Tokyo Institute of Technology began planning the next generation, they decided that chip R&D could take up no more than a quarter of system’s cost. But given the escalating expense of processor development, they would overshoot that by a wide margin. In 2010, they estimated it would take on the order of $10 million to develop a new custom ASIC on 45nm technology. So when it came time for GRAPE-8, the engineers were looking for alternatives.

The natural candidates were GPUs and FPGAs, which offer a lot of computational horsepower in an energy-efficient package. Each had its advantages: FPGAs in customization capability, GPUs in raw computing power. Ultimately though, they opted for a technology developed by eASIC, a fabless semiconductor company that offered a special kind of purpose-built ASIC, based on an FPGA workflow.

The technology had little grounding in high performance computing, being used mostly in embedded platforms, like wireless infrastructure and enterprise storage hardware. But the GRAPE designers were impressed by the efficiency of the technology. With an eASIC chip, they could get the same computational power as an FPGA for a tenth of the size and at about a third of the cost. And although the latest GPUs were slightly more powerful flop-wise than what eASIC could deliver, power consumption was an order of magnitude higher.

In a nutshell, the company offers something between an FPGA and a conventional ASIC. According to Niall Battson, eASIC’s Senior Product Manager, it looks like a field-programmable gate array, but “all the programming circuitry has been taken out.” That saves on both chip real estate and power since that circuitry doesn’t end up on the die.

In essence, the company is able to take an FPGA design (in RTL or whatever) and produce an ASIC from it. But not a conventional one. Battson says their real secret sauce is that the logic is laid down in a single silicon layer, rather than the four or five used for conventional ASICs. That simplification greatly speeds up chip validation and manufacturing, so much so that they can turn around a production chip in 4 to 6 months, depending upon the complexity of the design.

While the logic density and power efficiency are less than that of a standard ASIC, the up-front costs are considerably lower. For customers whose volumes eventually warrant a “true” ASIC (like for disk drive controllers), eASIC provides a service that takes the customer’s design through that final step of hardening.

For the astrophysics simulation supercomputer, no such step was necessary. The 45nm chip eASIC built and delivered for the new GRAPE-8 system achieves close to 500 gigaflops (250 MHz) with a power draw of just 10 watts. The GRAPE-8 accelerator board houses two of these custom chips, plus a standard processor, delivering 960 gigaflops in 46 watts. When hooked up to a PC host, another 200 watts is added. Even in this makeshift configuration, the system achieves 6.5 gigaflops per watt, about three times better that the 2.1 gigaflops per watt held by IBM’s Blue Gene/Q, the current Green500 champ.

Of course, the Blue Gene/Q is a general-purpose supercomputer, so the comparison is bit of apples-to-oranges. But the generality of computer designs exists on a continuum, not as a binary taxonomy. In general, better performance and power efficiency can be achieved as more specialization is incorporated into the hardware. The downside is that such single-application machines are notoriously expensive, which explains why there are so few of them. Besides GRAPE, only the Anton supercomputer (for molecular dynamics simulations) is still using application-specific ASICs.

The GRAPE designers are actually interested in building a more ambidextrous machine to handle a greater variety of science applications. In fact, the GRAPE-DR machine was a bit of a departure from its predecessors and was intended for applications outside of astrophysics simulations, including genome analysis, protein modeling and molecular dynamics.

According to Battson, a more general-purpose SIMD chip is certainly possible under an eASIC scheme, and they’re considering how they might be able to tweak their technology to make that happen. The company’s next generation 28nm product is slated to deliver twice the performance, while halving power consumption, so there is some headroom for added capabilities. The main problem he says is that a general-purpose SIMD ASIC would probably need to run twice as fast as the GRAPE-8 chip to deliver reasonable performance, and that drives up power consumption.

Of course, with the prospect of energy-sucking exascale machines on the horizon, application-specific supercomputing could make a comeback, especially if spinning out purpose-built accelerators was made fast and affordable. In that case, eASIC and its technology might find itself with a lot of eager suitors.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Frames Quantum Race as Two-Dimensional

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a pres Read more…

By Tiffany Trader

Affordable Optical Technology Needed Says HPE’s Daley

April 26, 2018

While not new, the challenges presented by computer cabling/PCB circuit routing design – cost, performance, space requirements, and power management – have coalesced into a major headache in advanced HPC system desig Read more…

By John Russell

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

Google Frames Quantum Race as Two-Dimensional

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field an Read more…

By Tiffany Trader

Affordable Optical Technology Needed Says HPE’s Daley

April 26, 2018

While not new, the challenges presented by computer cabling/PCB circuit routing design – cost, performance, space requirements, and power management – have Read more…

By John Russell

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This