Novel Chip Technology to Power GRAPE-8 Supercomputer

By Michael Feldman

May 10, 2012

With the fastest supercomputers on the planet sporting multi-megawatt appetites, green HPC has become all the rage. The IBM Blue Gene/Q machine is currently number one in energy-efficient flops, but a new FPGA-like technology brought to market by semiconductor startup eASIC is providing an even greener computing solution. And one HPC project in Japan, known as GRAPE, is using the chips to power its newest supercomputer.

GRAPE, which stands for Gravity Pipe, is a Japanese computing project that is focused on astrophysical simulation. (More specifically, the application uses Newtonian physics to compute the interaction of particles in N-body systems). The project, which began in 1989, has gone through eight generations of hardware, all of which were built as special-purpose supercomputer systems.

Each of the GRAPE machines was powered by a custom-built chip, specifically designed to optimize the astrophysical calculations that form the basis of the simulation work. The special-purpose processors were hooked up as external accelerators, using more conventional CPU-based host systems, in the form or workstations or servers, to drive the application.

The first-generation machine, GRAPE-1, managed just 240 single precision megaflops in 1989. The following year, the team build a double precision processor, which culminated in the 40-megaflop GRAPE-2. In 1998, they fielded GRAPE-4, their first teraflop system. The most recently system, GRAPE-DR, was designed to be a petascale machine, although its TOP500 entry showed up in 2009 as an 84.5 teraflop cluster.

Even though the GRAPE team was able to squeeze a lot more performance out of specially built hardware than they would have using general-purpose HPC machinery, it’s an expensive proposition. Each GRAPE iteration was based on a different ASIC design, necessitating the costly and time-consuming process of chip design, verification, and production. And as transistor geometries shrunk, development costs soared.

As the GRAPE team at Hitotsubashi University and the Tokyo Institute of Technology began planning the next generation, they decided that chip R&D could take up no more than a quarter of system’s cost. But given the escalating expense of processor development, they would overshoot that by a wide margin. In 2010, they estimated it would take on the order of $10 million to develop a new custom ASIC on 45nm technology. So when it came time for GRAPE-8, the engineers were looking for alternatives.

The natural candidates were GPUs and FPGAs, which offer a lot of computational horsepower in an energy-efficient package. Each had its advantages: FPGAs in customization capability, GPUs in raw computing power. Ultimately though, they opted for a technology developed by eASIC, a fabless semiconductor company that offered a special kind of purpose-built ASIC, based on an FPGA workflow.

The technology had little grounding in high performance computing, being used mostly in embedded platforms, like wireless infrastructure and enterprise storage hardware. But the GRAPE designers were impressed by the efficiency of the technology. With an eASIC chip, they could get the same computational power as an FPGA for a tenth of the size and at about a third of the cost. And although the latest GPUs were slightly more powerful flop-wise than what eASIC could deliver, power consumption was an order of magnitude higher.

In a nutshell, the company offers something between an FPGA and a conventional ASIC. According to Niall Battson, eASIC’s Senior Product Manager, it looks like a field-programmable gate array, but “all the programming circuitry has been taken out.” That saves on both chip real estate and power since that circuitry doesn’t end up on the die.

In essence, the company is able to take an FPGA design (in RTL or whatever) and produce an ASIC from it. But not a conventional one. Battson says their real secret sauce is that the logic is laid down in a single silicon layer, rather than the four or five used for conventional ASICs. That simplification greatly speeds up chip validation and manufacturing, so much so that they can turn around a production chip in 4 to 6 months, depending upon the complexity of the design.

While the logic density and power efficiency are less than that of a standard ASIC, the up-front costs are considerably lower. For customers whose volumes eventually warrant a “true” ASIC (like for disk drive controllers), eASIC provides a service that takes the customer’s design through that final step of hardening.

For the astrophysics simulation supercomputer, no such step was necessary. The 45nm chip eASIC built and delivered for the new GRAPE-8 system achieves close to 500 gigaflops (250 MHz) with a power draw of just 10 watts. The GRAPE-8 accelerator board houses two of these custom chips, plus a standard processor, delivering 960 gigaflops in 46 watts. When hooked up to a PC host, another 200 watts is added. Even in this makeshift configuration, the system achieves 6.5 gigaflops per watt, about three times better that the 2.1 gigaflops per watt held by IBM’s Blue Gene/Q, the current Green500 champ.

Of course, the Blue Gene/Q is a general-purpose supercomputer, so the comparison is bit of apples-to-oranges. But the generality of computer designs exists on a continuum, not as a binary taxonomy. In general, better performance and power efficiency can be achieved as more specialization is incorporated into the hardware. The downside is that such single-application machines are notoriously expensive, which explains why there are so few of them. Besides GRAPE, only the Anton supercomputer (for molecular dynamics simulations) is still using application-specific ASICs.

The GRAPE designers are actually interested in building a more ambidextrous machine to handle a greater variety of science applications. In fact, the GRAPE-DR machine was a bit of a departure from its predecessors and was intended for applications outside of astrophysics simulations, including genome analysis, protein modeling and molecular dynamics.

According to Battson, a more general-purpose SIMD chip is certainly possible under an eASIC scheme, and they’re considering how they might be able to tweak their technology to make that happen. The company’s next generation 28nm product is slated to deliver twice the performance, while halving power consumption, so there is some headroom for added capabilities. The main problem he says is that a general-purpose SIMD ASIC would probably need to run twice as fast as the GRAPE-8 chip to deliver reasonable performance, and that drives up power consumption.

Of course, with the prospect of energy-sucking exascale machines on the horizon, application-specific supercomputing could make a comeback, especially if spinning out purpose-built accelerators was made fast and affordable. In that case, eASIC and its technology might find itself with a lot of eager suitors.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Tribute: Dr. Bob Borchers, 1936-2018

June 21, 2018

Dr. Bob Borchers, a leader in the high performance computing community for decades, passed away peacefully in Maui, Hawaii, on June 7th. His memorial service will be held on June 22nd in Reston, Virginia. Dr. Borchers Read more…

By Ann Redelfs

ISC 2018 Preview from @hpcnotes

June 21, 2018

Prepare for your social media feed to be saturated with #HPC, #ISC18, #Top500, etc. Prepare for your mainstream media to talk about supercomputers (in between the hourly commentary on Brexit, the FIFA World Cup, or US pr Read more…

By Andrew Jones

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly but later versions of the Bulldozer line not so much. Fast f Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Preview the World’s Smartest Supercomputer at ISC 2018

Introducing an accelerated IT infrastructure for HPC & AI workloads Read more…

Why Student Cluster Competitions are Better than World Cup

June 21, 2018

My last article about the ISC18 Student Cluster Competition, titled “World Cup is Lame Compared to This Competition”, may have implied that I believe Student Cluster Competitions are better than World Cup soccer in s Read more…

By Dan Olds

ISC 2018 Preview from @hpcnotes

June 21, 2018

Prepare for your social media feed to be saturated with #HPC, #ISC18, #Top500, etc. Prepare for your mainstream media to talk about supercomputers (in between t Read more…

By Andrew Jones

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

European HPC Summit Week and PRACEdays 2018: Slaying Dragons and SHAPEing Futures One SME at a Time

June 20, 2018

The University of Ljubljana in Slovenia hosted the third annual EHPCSW18 and fifth annual PRACEdays18 events which opened May 29, 2018. The conference was chair Read more…

By Elizabeth Leake (STEM-Trek for HPCwire)

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose p Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This