Novel Chip Technology to Power GRAPE-8 Supercomputer

By Michael Feldman

May 10, 2012

With the fastest supercomputers on the planet sporting multi-megawatt appetites, green HPC has become all the rage. The IBM Blue Gene/Q machine is currently number one in energy-efficient flops, but a new FPGA-like technology brought to market by semiconductor startup eASIC is providing an even greener computing solution. And one HPC project in Japan, known as GRAPE, is using the chips to power its newest supercomputer.

GRAPE, which stands for Gravity Pipe, is a Japanese computing project that is focused on astrophysical simulation. (More specifically, the application uses Newtonian physics to compute the interaction of particles in N-body systems). The project, which began in 1989, has gone through eight generations of hardware, all of which were built as special-purpose supercomputer systems.

Each of the GRAPE machines was powered by a custom-built chip, specifically designed to optimize the astrophysical calculations that form the basis of the simulation work. The special-purpose processors were hooked up as external accelerators, using more conventional CPU-based host systems, in the form or workstations or servers, to drive the application.

The first-generation machine, GRAPE-1, managed just 240 single precision megaflops in 1989. The following year, the team build a double precision processor, which culminated in the 40-megaflop GRAPE-2. In 1998, they fielded GRAPE-4, their first teraflop system. The most recently system, GRAPE-DR, was designed to be a petascale machine, although its TOP500 entry showed up in 2009 as an 84.5 teraflop cluster.

Even though the GRAPE team was able to squeeze a lot more performance out of specially built hardware than they would have using general-purpose HPC machinery, it’s an expensive proposition. Each GRAPE iteration was based on a different ASIC design, necessitating the costly and time-consuming process of chip design, verification, and production. And as transistor geometries shrunk, development costs soared.

As the GRAPE team at Hitotsubashi University and the Tokyo Institute of Technology began planning the next generation, they decided that chip R&D could take up no more than a quarter of system’s cost. But given the escalating expense of processor development, they would overshoot that by a wide margin. In 2010, they estimated it would take on the order of $10 million to develop a new custom ASIC on 45nm technology. So when it came time for GRAPE-8, the engineers were looking for alternatives.

The natural candidates were GPUs and FPGAs, which offer a lot of computational horsepower in an energy-efficient package. Each had its advantages: FPGAs in customization capability, GPUs in raw computing power. Ultimately though, they opted for a technology developed by eASIC, a fabless semiconductor company that offered a special kind of purpose-built ASIC, based on an FPGA workflow.

The technology had little grounding in high performance computing, being used mostly in embedded platforms, like wireless infrastructure and enterprise storage hardware. But the GRAPE designers were impressed by the efficiency of the technology. With an eASIC chip, they could get the same computational power as an FPGA for a tenth of the size and at about a third of the cost. And although the latest GPUs were slightly more powerful flop-wise than what eASIC could deliver, power consumption was an order of magnitude higher.

In a nutshell, the company offers something between an FPGA and a conventional ASIC. According to Niall Battson, eASIC’s Senior Product Manager, it looks like a field-programmable gate array, but “all the programming circuitry has been taken out.” That saves on both chip real estate and power since that circuitry doesn’t end up on the die.

In essence, the company is able to take an FPGA design (in RTL or whatever) and produce an ASIC from it. But not a conventional one. Battson says their real secret sauce is that the logic is laid down in a single silicon layer, rather than the four or five used for conventional ASICs. That simplification greatly speeds up chip validation and manufacturing, so much so that they can turn around a production chip in 4 to 6 months, depending upon the complexity of the design.

While the logic density and power efficiency are less than that of a standard ASIC, the up-front costs are considerably lower. For customers whose volumes eventually warrant a “true” ASIC (like for disk drive controllers), eASIC provides a service that takes the customer’s design through that final step of hardening.

For the astrophysics simulation supercomputer, no such step was necessary. The 45nm chip eASIC built and delivered for the new GRAPE-8 system achieves close to 500 gigaflops (250 MHz) with a power draw of just 10 watts. The GRAPE-8 accelerator board houses two of these custom chips, plus a standard processor, delivering 960 gigaflops in 46 watts. When hooked up to a PC host, another 200 watts is added. Even in this makeshift configuration, the system achieves 6.5 gigaflops per watt, about three times better that the 2.1 gigaflops per watt held by IBM’s Blue Gene/Q, the current Green500 champ.

Of course, the Blue Gene/Q is a general-purpose supercomputer, so the comparison is bit of apples-to-oranges. But the generality of computer designs exists on a continuum, not as a binary taxonomy. In general, better performance and power efficiency can be achieved as more specialization is incorporated into the hardware. The downside is that such single-application machines are notoriously expensive, which explains why there are so few of them. Besides GRAPE, only the Anton supercomputer (for molecular dynamics simulations) is still using application-specific ASICs.

The GRAPE designers are actually interested in building a more ambidextrous machine to handle a greater variety of science applications. In fact, the GRAPE-DR machine was a bit of a departure from its predecessors and was intended for applications outside of astrophysics simulations, including genome analysis, protein modeling and molecular dynamics.

According to Battson, a more general-purpose SIMD chip is certainly possible under an eASIC scheme, and they’re considering how they might be able to tweak their technology to make that happen. The company’s next generation 28nm product is slated to deliver twice the performance, while halving power consumption, so there is some headroom for added capabilities. The main problem he says is that a general-purpose SIMD ASIC would probably need to run twice as fast as the GRAPE-8 chip to deliver reasonable performance, and that drives up power consumption.

Of course, with the prospect of energy-sucking exascale machines on the horizon, application-specific supercomputing could make a comeback, especially if spinning out purpose-built accelerators was made fast and affordable. In that case, eASIC and its technology might find itself with a lot of eager suitors.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a community infrastructure in support of machine learning research Read more…

By John Russell

DARPA Continues Investment in Post-Moore’s Technologies

July 24, 2017

The U.S. military long ago ceded dominance in electronics innovation to Silicon Valley, the DoD-backed powerhouse that has driven microelectronic generation for decades. With Moore's Law clearly running out of steam, the Read more…

By George Leopold

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a comm Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This