Novel Chip Technology to Power GRAPE-8 Supercomputer

By Michael Feldman

May 10, 2012

With the fastest supercomputers on the planet sporting multi-megawatt appetites, green HPC has become all the rage. The IBM Blue Gene/Q machine is currently number one in energy-efficient flops, but a new FPGA-like technology brought to market by semiconductor startup eASIC is providing an even greener computing solution. And one HPC project in Japan, known as GRAPE, is using the chips to power its newest supercomputer.

GRAPE, which stands for Gravity Pipe, is a Japanese computing project that is focused on astrophysical simulation. (More specifically, the application uses Newtonian physics to compute the interaction of particles in N-body systems). The project, which began in 1989, has gone through eight generations of hardware, all of which were built as special-purpose supercomputer systems.

Each of the GRAPE machines was powered by a custom-built chip, specifically designed to optimize the astrophysical calculations that form the basis of the simulation work. The special-purpose processors were hooked up as external accelerators, using more conventional CPU-based host systems, in the form or workstations or servers, to drive the application.

The first-generation machine, GRAPE-1, managed just 240 single precision megaflops in 1989. The following year, the team build a double precision processor, which culminated in the 40-megaflop GRAPE-2. In 1998, they fielded GRAPE-4, their first teraflop system. The most recently system, GRAPE-DR, was designed to be a petascale machine, although its TOP500 entry showed up in 2009 as an 84.5 teraflop cluster.

Even though the GRAPE team was able to squeeze a lot more performance out of specially built hardware than they would have using general-purpose HPC machinery, it’s an expensive proposition. Each GRAPE iteration was based on a different ASIC design, necessitating the costly and time-consuming process of chip design, verification, and production. And as transistor geometries shrunk, development costs soared.

As the GRAPE team at Hitotsubashi University and the Tokyo Institute of Technology began planning the next generation, they decided that chip R&D could take up no more than a quarter of system’s cost. But given the escalating expense of processor development, they would overshoot that by a wide margin. In 2010, they estimated it would take on the order of $10 million to develop a new custom ASIC on 45nm technology. So when it came time for GRAPE-8, the engineers were looking for alternatives.

The natural candidates were GPUs and FPGAs, which offer a lot of computational horsepower in an energy-efficient package. Each had its advantages: FPGAs in customization capability, GPUs in raw computing power. Ultimately though, they opted for a technology developed by eASIC, a fabless semiconductor company that offered a special kind of purpose-built ASIC, based on an FPGA workflow.

The technology had little grounding in high performance computing, being used mostly in embedded platforms, like wireless infrastructure and enterprise storage hardware. But the GRAPE designers were impressed by the efficiency of the technology. With an eASIC chip, they could get the same computational power as an FPGA for a tenth of the size and at about a third of the cost. And although the latest GPUs were slightly more powerful flop-wise than what eASIC could deliver, power consumption was an order of magnitude higher.

In a nutshell, the company offers something between an FPGA and a conventional ASIC. According to Niall Battson, eASIC’s Senior Product Manager, it looks like a field-programmable gate array, but “all the programming circuitry has been taken out.” That saves on both chip real estate and power since that circuitry doesn’t end up on the die.

In essence, the company is able to take an FPGA design (in RTL or whatever) and produce an ASIC from it. But not a conventional one. Battson says their real secret sauce is that the logic is laid down in a single silicon layer, rather than the four or five used for conventional ASICs. That simplification greatly speeds up chip validation and manufacturing, so much so that they can turn around a production chip in 4 to 6 months, depending upon the complexity of the design.

While the logic density and power efficiency are less than that of a standard ASIC, the up-front costs are considerably lower. For customers whose volumes eventually warrant a “true” ASIC (like for disk drive controllers), eASIC provides a service that takes the customer’s design through that final step of hardening.

For the astrophysics simulation supercomputer, no such step was necessary. The 45nm chip eASIC built and delivered for the new GRAPE-8 system achieves close to 500 gigaflops (250 MHz) with a power draw of just 10 watts. The GRAPE-8 accelerator board houses two of these custom chips, plus a standard processor, delivering 960 gigaflops in 46 watts. When hooked up to a PC host, another 200 watts is added. Even in this makeshift configuration, the system achieves 6.5 gigaflops per watt, about three times better that the 2.1 gigaflops per watt held by IBM’s Blue Gene/Q, the current Green500 champ.

Of course, the Blue Gene/Q is a general-purpose supercomputer, so the comparison is bit of apples-to-oranges. But the generality of computer designs exists on a continuum, not as a binary taxonomy. In general, better performance and power efficiency can be achieved as more specialization is incorporated into the hardware. The downside is that such single-application machines are notoriously expensive, which explains why there are so few of them. Besides GRAPE, only the Anton supercomputer (for molecular dynamics simulations) is still using application-specific ASICs.

The GRAPE designers are actually interested in building a more ambidextrous machine to handle a greater variety of science applications. In fact, the GRAPE-DR machine was a bit of a departure from its predecessors and was intended for applications outside of astrophysics simulations, including genome analysis, protein modeling and molecular dynamics.

According to Battson, a more general-purpose SIMD chip is certainly possible under an eASIC scheme, and they’re considering how they might be able to tweak their technology to make that happen. The company’s next generation 28nm product is slated to deliver twice the performance, while halving power consumption, so there is some headroom for added capabilities. The main problem he says is that a general-purpose SIMD ASIC would probably need to run twice as fast as the GRAPE-8 chip to deliver reasonable performance, and that drives up power consumption.

Of course, with the prospect of energy-sucking exascale machines on the horizon, application-specific supercomputing could make a comeback, especially if spinning out purpose-built accelerators was made fast and affordable. In that case, eASIC and its technology might find itself with a lot of eager suitors.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Live and in Color, Meet the European Student Cluster Teams

November 21, 2017

The SC17 Student Cluster Competition welcomed two teams from Europe, the German team of FAU/TUC and Team Poland, the pride of Warsaw. Let's get to know them better through the miracle of video..... Team FAU/TUC is a c Read more…

By Dan Olds

SC17 Student Cluster Kick Off – Guts, Glory, Grep

November 21, 2017

The SC17 Student Cluster Competition started with a well-orchestrated kick-off emceed by Stephen Harrell, the competition chair. It began with a welcome from SC17 chair Bernd Mohr, where he lauded the competition for Read more…

By Dan Olds

Activist Investor Starboard Buys 10.7% Stake in Mellanox; Sale Possible?

November 20, 2017

Starboard Value has reportedly taken a 10.7 percent stake in interconnect specialist Mellanox Technologies, and according to the Wall Street Journal, has urged the company “to improve its margins and stock and explore Read more…

By John Russell

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

Installation of Sierra Supercomputer Steams Along at LLNL

November 20, 2017

Sierra, the 125 petaflops (peak) machine based on IBM’s Power9 chip being built at Lawrence Livermore National Laboratory, sometimes takes a back seat to Summit, the ~200 petaflops system being built at Oak Ridge Natio Read more…

By John Russell

Live and in Color, Meet the European Student Cluster Teams

November 21, 2017

The SC17 Student Cluster Competition welcomed two teams from Europe, the German team of FAU/TUC and Team Poland, the pride of Warsaw. Let's get to know them bet Read more…

By Dan Olds

SC17 Student Cluster Kick Off – Guts, Glory, Grep

November 21, 2017

The SC17 Student Cluster Competition started with a well-orchestrated kick-off emceed by Stephen Harrell, the competition chair. It began with a welcome from Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Share This