Intel Rolls Out New Server CPUs

By Michael Feldman

May 14, 2012

Intel Corp. has launched three new families of Xeon processors, joining the Xeon E5-2600 series the chipmaker introduced in March. These latest chips span the entire market for the Xeon line, from four- and two-socket servers, down to entry-level workstations and microservers. A number of HPC server makers, including SGI, Dell, and Appro announced updated hardware based on the new silicon.

The newest Xeon of greatest interest to high performance computing is the Sandy Bridge E5-4600 series, which is built for four-socket servers. At the CPU level, the E5-4600 is more or less identical to the E5-2600 for two-socket systems, both of which are available in 4-, 6-, and 8-core flavors, support 4 memory channels, include 40 lanes of integrated PCIe 3.0, and come with up to 20 MB of last level cache. The four-socket E5-4600 can support twice as much memory per system (up to 1.5 TB) as its two-socket counterpart, but that just serves to keep the per processor and per core memory ratio in line.

In normal times, the new four-socket Xeon would simply take the place of the older technology, in this case the Xeon E7 (“Westmere-EX”), but Intel has moved the new chip into a somewhat different role. According to Michele Fisher, a senior product marketing engineer at Intel, the E5-4600 is intended to complement the E7, rather than replace it. Specifically, the Sandy Bridge version is a “cost and density optimized” CPU for four-socket servers, which in this case is reflected in less cores (maxing out at 8 instead of 10 on the Westmere-EX), a lower memory capacity (1.5 TB instead of 2.0 TB), and less RAS support. It’s also less expensive. The price range on the new four-socket Xeons is $551 to $3,616; on the older Westmere E7 chips, it’s $774 to $4,616.

The idea, says Fisher, is to target the new four-socket CPUs for dense, scale-out systems in domains like HPC and telco, and to support growing geographies like China, which are especially cost-conscious. And because of their density and better energy efficiency, the new CPUs are especially suitable for four-socket blade servers. The older E7 chips will continue to be sold into more traditional enterprise systems, in particular, high-end transactional database machines, where the larger memory footprint and high reliability features are most appreciated.

Since the E5-4600 supports the Advanced Vector Extensions (AVX), courtesy of the Sandy Bridge microarchitecture, the new chip can do floating point operations at twice the clip of its pre-AVX predecessors. According to Intel, a four-socket server outfitted with E5-4650 CPUs can deliver 602 gigaflops on Linpack, which is nearly twice the flops that can be achieved with the top-of the-line E7 technology. That makes this chip a fairly obvious replacement for the E7 when the application domain is scientific computing.

Which explains why SGI is upgrading its Altix UV shared memory supercomputing platform from the E7 to the E5-4600. Also, since the UV has SGI’s custom NUMAlink interconnect and node controller, that system can scale well beyond the four sockets and 1.5 TB of cache coherent memory based on the native Intel chipset.

In fact, SGI’s new Sandy Bridge-based UV can scale up to 4,096 cores and 64 TB of memory in a single system. That’s twice the number of cores and four times the memory of the older Westmere-based UV. And because of the chip’s AVX support, peak flops per UV rack has doubled, from 5.4 to 11 teraflops.

SGI has already sold one of its new UVs to the COSMOS Consortium, a group that uses HPC to support origin-of-the-universe type research associated with Stephen Hawking’s cosmology work. Some of the simulations are designed to reveal the nature of the universe immediately after — as in one second after — the Big Bang. The computer will also support other cosmology research, including searching for planets outside our solar system.

Dell is also using the E5-4600, but in more conventional HPC gear. It’s putting the new Xeon into its four-socket PowerEdge M820 and R820, a blade and rackmount server, respectively. The M820 can house up to 10 full-height blades in 10U chassis, while the half-as-dense rackmount R820 puts a single four-socket server into a 2U box.

A couple steps down performance-wise from the E5-4600 is Intel’s new Sandy Bridge E5-2400, aimed at lower-end two socket servers. It’s designed to be a more energy-efficient alternative to the original two-socket E5-2600. It’s also considerably cheaper, with a price range of $188 to $1,440.

The E5-2400 series spans the same core counts as E5-2600, but gets by with one less memory channel (3), fewer PCIe lanes (24), and maxes out at half the memory (384 GB) of its older sibling. More importantly, they tend to be slower chips; the top-end E5-2440 is nearly full gigahertz slower (2.4 GHz) than the fastest E5-2600. But that translates into less power draw — from 60 watts on the low end part, up to 95 watts at the top end.

Their energy efficiency and cost make them suitable for scale-out clusters that don’t require a lot of single-threaded horsepower. Dell, for example, is using the E5-2400 processors in their new M420 blade, which is being positioned for some HPC-type workloads, especially animation and CGI rendering. The M420 is the first quarter-height dual-socket blade in the market; 32 of the mini-blades (1024 cores) can be squeezed into a 10U chassis. As with the four-socket gear, Dell is also offering a rackmount counterpart, the R420.

SGI is using the E5-2400 CPU as the base processor for its the Hadoop clusters, as well as in its Rackable server line for more general enterprise duty. For many Hadoop applications, which tend to be bound by data movement, rather than raw computational muscle, this chip could be a nice fit. And even though it’s slower than the mainline E5-2600 chips, SGI is still promising 22 percent better price-performance and 27 percent better performance/watt than the corresponding Westmere EP-based Hadoop gear.

The third new Xeon is the one-socket E3-1200 v2, a 22nm Ivy Bridge CPU for entry-level servers and workstations. Offered in dual-core and quad-core configurations, prices range from $189 to $884. The fastest part, at 3.7 GHz, offers quite respectable performance, but with only 8 MB of cache and a maximum memory capacity of 32 GB, the chip might be a bit of a stretch for HPC duty.

The family also includes two interesting new CPUs aimed at the microserver market, including Intel’s lowest powered Xeon, the E3-1220L v2. With a TDP of just 17 watts, that’s approaching ARM CPU territory. For example, Calexda makes a quad-core ARM chip for microservers that draws 5 watts, but that’s a 32-bit CPU, which limits its application in the server room rather substantially. The 64-bit E3 Xeon would have no such problem.

Intel is not positioning these new microserver Xeons for high performance computing; ostensibly they’re targeted for front-end web workloads, content delivery, and dedicated hosting. However, some creative server maker might be able to design a nifty little one-socket box with the E3-1220L v2 that could be used for some types of embarrassingly parallel codes. But since Intel would much rather sell its higher end E5 Xeons to its HPC customers, we’re not likely to see a Xeon-based microservers in supercomputers anytime soon.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the General Chair of SC19 -- is an ACM Distinguished Scientist. Read more…

By HPCwire Editorial Team

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

AI and Enterprise Datacenters Boost HPC Server Revenues Past Expectations – Hyperion

April 9, 2019

Building on the big year of 2017 and spurred in part by the convergence of AI and HPC, global revenue for high performance servers jumped 15.6 percent last year Read more…

By Doug Black

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This