NVIDIA Launches Kepler Into HPC

By Michael Feldman

May 15, 2012

NVIDIA has introduced its first Kepler-generation GPU product for high performance computing, and revealed some of the inner working of the new architecture. The announcement took place at the kickoff of the company’s GPU Technology Conference (GTC) taking place this week in San Jose, California.

Kepler’s HPC debut comes at time when NVIDIA has established itself as the go-to chip vendor for heterogeneous supercomputing. With Intel’s MIC product launch several months away and AMD still primarily focused on the consumer space with its CPU-GPU Fusion processors, NVIDIA has enjoyed free reign in the HPC acceleration business.

And it appears to be turning into quite a business. IDC is reporting that 75 percent of total HPC customer will use GPUs by 2014. And according to Sumit Gupta, NVIDIA’s senior director of the Tesla GPU Computing business unit, by the end of this year, 50 to 60 percent of the top apps at the big supercomputing labs around the world will be accelerated by GPUs. That level of interest is also reflected in CUDA toolkit downloads, which Gupta reports is occurring at the rate of one every 60 seconds. “We’re seeing a true liftoff in the number of application accelerated by GPUs,” he says.

In 2010, NVIDIA changed the game in HPC with the Fermi chips, introducing error corrected memory and some serious double precision floating point performance — 665 gigaflops, to be precise. Gupta believes the feature set they’re bringing to the table with the Kepler architecture will provide the basis for same sort of technological discontinuity.

One of the more interesting pieces of the Kepler HPC technology is the so-called “Hyper-Q” capability. Essentially it allows the GPU to work on as many as 32 CPU-driven MPI tasks simultaneously. With Fermi, the GPU was only able to run a single MPI task at a time (although multiple tasks could be on-chip, waiting to be switched to). So if a task only happens to use a quarter of the cores, the remain three quarters of the GPU was idle. Now with up 32 tasks running concurrently, both the CPU host and the GPU accelerator should be better utilized, with less idle time all around.

Another notable Kepler enhancement is something the Nvidians call “dynamic parallelism.” This allows the GPU to do a lot more processing independently of the CPU. The traditional model was for the CPU to send the GPU some work via a CUDA call; when it was done, the GPU would have to wait for more work from the host.

With dynamic parallelism, that kind of ping-pong processing can be greatly reduced. CUDA functions that previously would have been launched from the CPU, can now be called from the CUDA code itself on the GPU. Performance should be better since communication overhead between the two chips will be reduced. In essence, more of the application will end up on the GPU, allowing the CPU to free to do its own thing.

Perhaps more importantly, notes Gupta, is that this capability will allow developers to write applications for the GPU much more naturally, since much of the CPU-to-GPU calls can be done away with. And it will allow more complex and irregular types of applications (like adaptive mesh codes) to be ported more easily to the GPU. “This is a ground-breaking change,” says Gupta.

But the fundamental upgrade to Kepler is its increased core count. To make that happen, the engineers did a complete redesign of the GPU’s streaming multiprocessor (SM), the internal structure that provides thread processing. In Fermi, each SM contained 32 cores; while in Kepler, that’s been bumped way up to 192.

Part of that was possible thanks to the smaller 28nm process technology for the Kepler silicon, but the engineers also freed up additional die real estate by compressing the control logic on the multiprocessor. The result is that each Kepler SM — now referred to as SM extreme, or SMX — has six times as many cores as its predecessor.

To go along with the extra parallelism, the NVIDIA engineers reduced the clock frequency those cores are running at by about half. In doing so, they were able to realize about three times the performance per watt of the Fermi GPU. If you’re keeping score at home, that means a Kepler GPU that draws the same 225 watt TDP as the latest Fermi Tesla part should deliver just shy of 2 teraflops of double precision.

That product, however, will not be NVIDIA’s first Kepler Tesla that it announced today at the GTC event. Known as the K10, this initial HPC Kepler offering will house two consumer-grade GK104 GPUs, the same chip used in the Kepler GeForce products that were introduced in March.

As such it lacks the nifty high-end Hyper-Q and dynamic parallelism features mentioned above. Plus it’s rather underpowered in the double precision (DP) floating point department, managing only 190 gigaflops — less than a third that of the Fermi Tesla M2090.

Where the K10 shines is in single precision (SP), delivering 4.48 teraflops across the two GPUs, which is three and a half times the SP floppery of the Fermi M2090 hardware. This makes it especially suitable for applications like image/signal processing, seismic codes, and maybe some mixed precision algorithms in academia. According to NVIDIA, initial testing with LAMMPS, NAMD, seismic processing, and certain integer-centric defense codes showed performance increases between 1.5X and 2.0X compared to the Fermi M2090. Petrobras, the Brazilian oil and gas company, reported a 1.8X speedup on its seismic application with the K10.

The new card is also plenty fast at data transfer speeds, sporting 320 GB/sec of memory bandwidth and a host connection of 16 GB/sec, courtesy of PCIe Gen 3. Memory capacity is a respectable 8 GB, which is shared between the two GPUs on the card.

The K10 is shipping this month and will be initially available in products from IBM, HP, Dell, SGI, Appro, and Supermicro.

Further down the road is the K20, which will represent NVIDIA’s first true Kepler-generation supercomputing Tesla. The K20 will be based on the GK110 GPU, which is the one built for HPC duty. It will fold in the Hyper-Q and dynamic parallelism technology, and will be fully outfitted for double precision. For the time being, NVIDIA is keeping mum on the peak performance, but this is the chip that could be flirting with 2 DP teraflops. In any case, we’ll have to wait until later in the year to get the actual specs.

The K20 will be the Tesla deployed in “Titan” supercomputer at Oak Ridge National Lab, and in the NCSA’s “Blue Waters” system at the University of Illinois. Some of new chips could be installed in these top supers as early as the fall, but volume production of the K20 is slated for Q4.

Although the multi-petaflop systems mentioned above will get first crack at the K20, this is the product NVIDIA is hoping universities and mid-sized installations start adopting to build their own petaflop supers. Gupta says Kepler-equipped supers of this size will be able to fit into 10 server racks and draw a relatively modest 400 KW of power, well within the reach of a modest-sized organization. If Kepler indeed becomes the enabling technology of petascale supercomputing for the masses, NVIDIA will have delivered another GPU that, once again, changed the game in HPC.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This