NVIDIA Launches Kepler Into HPC

By Michael Feldman

May 15, 2012

NVIDIA has introduced its first Kepler-generation GPU product for high performance computing, and revealed some of the inner working of the new architecture. The announcement took place at the kickoff of the company’s GPU Technology Conference (GTC) taking place this week in San Jose, California.

Kepler’s HPC debut comes at time when NVIDIA has established itself as the go-to chip vendor for heterogeneous supercomputing. With Intel’s MIC product launch several months away and AMD still primarily focused on the consumer space with its CPU-GPU Fusion processors, NVIDIA has enjoyed free reign in the HPC acceleration business.

And it appears to be turning into quite a business. IDC is reporting that 75 percent of total HPC customer will use GPUs by 2014. And according to Sumit Gupta, NVIDIA’s senior director of the Tesla GPU Computing business unit, by the end of this year, 50 to 60 percent of the top apps at the big supercomputing labs around the world will be accelerated by GPUs. That level of interest is also reflected in CUDA toolkit downloads, which Gupta reports is occurring at the rate of one every 60 seconds. “We’re seeing a true liftoff in the number of application accelerated by GPUs,” he says.

In 2010, NVIDIA changed the game in HPC with the Fermi chips, introducing error corrected memory and some serious double precision floating point performance — 665 gigaflops, to be precise. Gupta believes the feature set they’re bringing to the table with the Kepler architecture will provide the basis for same sort of technological discontinuity.

One of the more interesting pieces of the Kepler HPC technology is the so-called “Hyper-Q” capability. Essentially it allows the GPU to work on as many as 32 CPU-driven MPI tasks simultaneously. With Fermi, the GPU was only able to run a single MPI task at a time (although multiple tasks could be on-chip, waiting to be switched to). So if a task only happens to use a quarter of the cores, the remain three quarters of the GPU was idle. Now with up 32 tasks running concurrently, both the CPU host and the GPU accelerator should be better utilized, with less idle time all around.

Another notable Kepler enhancement is something the Nvidians call “dynamic parallelism.” This allows the GPU to do a lot more processing independently of the CPU. The traditional model was for the CPU to send the GPU some work via a CUDA call; when it was done, the GPU would have to wait for more work from the host.

With dynamic parallelism, that kind of ping-pong processing can be greatly reduced. CUDA functions that previously would have been launched from the CPU, can now be called from the CUDA code itself on the GPU. Performance should be better since communication overhead between the two chips will be reduced. In essence, more of the application will end up on the GPU, allowing the CPU to free to do its own thing.

Perhaps more importantly, notes Gupta, is that this capability will allow developers to write applications for the GPU much more naturally, since much of the CPU-to-GPU calls can be done away with. And it will allow more complex and irregular types of applications (like adaptive mesh codes) to be ported more easily to the GPU. “This is a ground-breaking change,” says Gupta.

But the fundamental upgrade to Kepler is its increased core count. To make that happen, the engineers did a complete redesign of the GPU’s streaming multiprocessor (SM), the internal structure that provides thread processing. In Fermi, each SM contained 32 cores; while in Kepler, that’s been bumped way up to 192.

Part of that was possible thanks to the smaller 28nm process technology for the Kepler silicon, but the engineers also freed up additional die real estate by compressing the control logic on the multiprocessor. The result is that each Kepler SM — now referred to as SM extreme, or SMX — has six times as many cores as its predecessor.

To go along with the extra parallelism, the NVIDIA engineers reduced the clock frequency those cores are running at by about half. In doing so, they were able to realize about three times the performance per watt of the Fermi GPU. If you’re keeping score at home, that means a Kepler GPU that draws the same 225 watt TDP as the latest Fermi Tesla part should deliver just shy of 2 teraflops of double precision.

That product, however, will not be NVIDIA’s first Kepler Tesla that it announced today at the GTC event. Known as the K10, this initial HPC Kepler offering will house two consumer-grade GK104 GPUs, the same chip used in the Kepler GeForce products that were introduced in March.

As such it lacks the nifty high-end Hyper-Q and dynamic parallelism features mentioned above. Plus it’s rather underpowered in the double precision (DP) floating point department, managing only 190 gigaflops — less than a third that of the Fermi Tesla M2090.

Where the K10 shines is in single precision (SP), delivering 4.48 teraflops across the two GPUs, which is three and a half times the SP floppery of the Fermi M2090 hardware. This makes it especially suitable for applications like image/signal processing, seismic codes, and maybe some mixed precision algorithms in academia. According to NVIDIA, initial testing with LAMMPS, NAMD, seismic processing, and certain integer-centric defense codes showed performance increases between 1.5X and 2.0X compared to the Fermi M2090. Petrobras, the Brazilian oil and gas company, reported a 1.8X speedup on its seismic application with the K10.

The new card is also plenty fast at data transfer speeds, sporting 320 GB/sec of memory bandwidth and a host connection of 16 GB/sec, courtesy of PCIe Gen 3. Memory capacity is a respectable 8 GB, which is shared between the two GPUs on the card.

The K10 is shipping this month and will be initially available in products from IBM, HP, Dell, SGI, Appro, and Supermicro.

Further down the road is the K20, which will represent NVIDIA’s first true Kepler-generation supercomputing Tesla. The K20 will be based on the GK110 GPU, which is the one built for HPC duty. It will fold in the Hyper-Q and dynamic parallelism technology, and will be fully outfitted for double precision. For the time being, NVIDIA is keeping mum on the peak performance, but this is the chip that could be flirting with 2 DP teraflops. In any case, we’ll have to wait until later in the year to get the actual specs.

The K20 will be the Tesla deployed in “Titan” supercomputer at Oak Ridge National Lab, and in the NCSA’s “Blue Waters” system at the University of Illinois. Some of new chips could be installed in these top supers as early as the fall, but volume production of the K20 is slated for Q4.

Although the multi-petaflop systems mentioned above will get first crack at the K20, this is the product NVIDIA is hoping universities and mid-sized installations start adopting to build their own petaflop supers. Gupta says Kepler-equipped supers of this size will be able to fit into 10 server racks and draw a relatively modest 400 KW of power, well within the reach of a modest-sized organization. If Kepler indeed becomes the enabling technology of petascale supercomputing for the masses, NVIDIA will have delivered another GPU that, once again, changed the game in HPC.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. The news follows HPE’s acquisition nearly three years ago o Read more…

By Doug Black & Tiffany Trader

China Establishes Seventh National Supercomputing Center

May 16, 2019

Chinese media is reporting that China will construct a new National Supercomputer Center in Zhengzhou, in central China's Henan Province. The new Zhengzhou facility will house a 100-petaflops supercomputer and will be ta Read more…

By Staff report

Interview with 2019 Person to Watch Ken King

May 16, 2019

Today, as the final installment of our HPCwire People to Watch focus series, we present our interview with Ken King, general manager of OpenPOWER for the IBM Systems Group. Ken is responsible for building and managing t Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Autonomous Vehicles: New challenges for the CAE Data Center

Managing infrastructure complexity in the age of AI

When most of us hear the term autonomous vehicles, we conjure up images of driverless Waymos or robotic transport trucks driving long-haul highway routes. Read more…

What’s New in HPC Research: Image Classification, Crowd Computing, Genome Informatics & More

May 15, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

CCC Offers Draft 20-Year AI Roadmap; Seeks Comments

May 14, 2019

Artificial Intelligence in all its guises has captured much of the conversation in HPC and general computing today. The White House, DARPA, IARPA, and Departmen Read more…

By John Russell

Cascade Lake Shows Up to 84 Percent Gen-on-Gen Advantage on STAC Benchmarking

May 13, 2019

The Securities Technology Analysis Center (STAC) issued a report Friday comparing the performance of Intel's Cascade Lake processors with previous-gen Skylake u Read more…

By Tiffany Trader

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

ASC19: NTHU Returns to Glory

May 11, 2019

As many of you Student Cluster Competition fanatics know by now, Taiwan’s National Tsing Hua University (NTHU) won the gold medal at the recently concluded AS Read more…

By Dan Olds

Intel 7nm GPU on Roadmap for 2021, OneAPI Coming This Year

May 8, 2019

At Intel's investor meeting today in Santa Clara, Calif., the company filled in details of its roadmap and product launch plans and sought to allay concerns about delays of its 10nm chips. In laying out its 10nm and 7nm timelines, Intel revealed that its first 7nm product would be... Read more…

By Tiffany Trader

Ten Great Reasons to Build the 1.5 Exaflops Frontier

May 7, 2019

It’s perhaps obvious that the fundamental reason for building expensive exascale computers is to drive science and industry forward, realizing the resulting b Read more…

By John Russell

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This