NVIDIA Launches Kepler Into HPC

By Michael Feldman

May 15, 2012

NVIDIA has introduced its first Kepler-generation GPU product for high performance computing, and revealed some of the inner working of the new architecture. The announcement took place at the kickoff of the company’s GPU Technology Conference (GTC) taking place this week in San Jose, California.

Kepler’s HPC debut comes at time when NVIDIA has established itself as the go-to chip vendor for heterogeneous supercomputing. With Intel’s MIC product launch several months away and AMD still primarily focused on the consumer space with its CPU-GPU Fusion processors, NVIDIA has enjoyed free reign in the HPC acceleration business.

And it appears to be turning into quite a business. IDC is reporting that 75 percent of total HPC customer will use GPUs by 2014. And according to Sumit Gupta, NVIDIA’s senior director of the Tesla GPU Computing business unit, by the end of this year, 50 to 60 percent of the top apps at the big supercomputing labs around the world will be accelerated by GPUs. That level of interest is also reflected in CUDA toolkit downloads, which Gupta reports is occurring at the rate of one every 60 seconds. “We’re seeing a true liftoff in the number of application accelerated by GPUs,” he says.

In 2010, NVIDIA changed the game in HPC with the Fermi chips, introducing error corrected memory and some serious double precision floating point performance — 665 gigaflops, to be precise. Gupta believes the feature set they’re bringing to the table with the Kepler architecture will provide the basis for same sort of technological discontinuity.

One of the more interesting pieces of the Kepler HPC technology is the so-called “Hyper-Q” capability. Essentially it allows the GPU to work on as many as 32 CPU-driven MPI tasks simultaneously. With Fermi, the GPU was only able to run a single MPI task at a time (although multiple tasks could be on-chip, waiting to be switched to). So if a task only happens to use a quarter of the cores, the remain three quarters of the GPU was idle. Now with up 32 tasks running concurrently, both the CPU host and the GPU accelerator should be better utilized, with less idle time all around.

Another notable Kepler enhancement is something the Nvidians call “dynamic parallelism.” This allows the GPU to do a lot more processing independently of the CPU. The traditional model was for the CPU to send the GPU some work via a CUDA call; when it was done, the GPU would have to wait for more work from the host.

With dynamic parallelism, that kind of ping-pong processing can be greatly reduced. CUDA functions that previously would have been launched from the CPU, can now be called from the CUDA code itself on the GPU. Performance should be better since communication overhead between the two chips will be reduced. In essence, more of the application will end up on the GPU, allowing the CPU to free to do its own thing.

Perhaps more importantly, notes Gupta, is that this capability will allow developers to write applications for the GPU much more naturally, since much of the CPU-to-GPU calls can be done away with. And it will allow more complex and irregular types of applications (like adaptive mesh codes) to be ported more easily to the GPU. “This is a ground-breaking change,” says Gupta.

But the fundamental upgrade to Kepler is its increased core count. To make that happen, the engineers did a complete redesign of the GPU’s streaming multiprocessor (SM), the internal structure that provides thread processing. In Fermi, each SM contained 32 cores; while in Kepler, that’s been bumped way up to 192.

Part of that was possible thanks to the smaller 28nm process technology for the Kepler silicon, but the engineers also freed up additional die real estate by compressing the control logic on the multiprocessor. The result is that each Kepler SM — now referred to as SM extreme, or SMX — has six times as many cores as its predecessor.

To go along with the extra parallelism, the NVIDIA engineers reduced the clock frequency those cores are running at by about half. In doing so, they were able to realize about three times the performance per watt of the Fermi GPU. If you’re keeping score at home, that means a Kepler GPU that draws the same 225 watt TDP as the latest Fermi Tesla part should deliver just shy of 2 teraflops of double precision.

That product, however, will not be NVIDIA’s first Kepler Tesla that it announced today at the GTC event. Known as the K10, this initial HPC Kepler offering will house two consumer-grade GK104 GPUs, the same chip used in the Kepler GeForce products that were introduced in March.

As such it lacks the nifty high-end Hyper-Q and dynamic parallelism features mentioned above. Plus it’s rather underpowered in the double precision (DP) floating point department, managing only 190 gigaflops — less than a third that of the Fermi Tesla M2090.

Where the K10 shines is in single precision (SP), delivering 4.48 teraflops across the two GPUs, which is three and a half times the SP floppery of the Fermi M2090 hardware. This makes it especially suitable for applications like image/signal processing, seismic codes, and maybe some mixed precision algorithms in academia. According to NVIDIA, initial testing with LAMMPS, NAMD, seismic processing, and certain integer-centric defense codes showed performance increases between 1.5X and 2.0X compared to the Fermi M2090. Petrobras, the Brazilian oil and gas company, reported a 1.8X speedup on its seismic application with the K10.

The new card is also plenty fast at data transfer speeds, sporting 320 GB/sec of memory bandwidth and a host connection of 16 GB/sec, courtesy of PCIe Gen 3. Memory capacity is a respectable 8 GB, which is shared between the two GPUs on the card.

The K10 is shipping this month and will be initially available in products from IBM, HP, Dell, SGI, Appro, and Supermicro.

Further down the road is the K20, which will represent NVIDIA’s first true Kepler-generation supercomputing Tesla. The K20 will be based on the GK110 GPU, which is the one built for HPC duty. It will fold in the Hyper-Q and dynamic parallelism technology, and will be fully outfitted for double precision. For the time being, NVIDIA is keeping mum on the peak performance, but this is the chip that could be flirting with 2 DP teraflops. In any case, we’ll have to wait until later in the year to get the actual specs.

The K20 will be the Tesla deployed in “Titan” supercomputer at Oak Ridge National Lab, and in the NCSA’s “Blue Waters” system at the University of Illinois. Some of new chips could be installed in these top supers as early as the fall, but volume production of the K20 is slated for Q4.

Although the multi-petaflop systems mentioned above will get first crack at the K20, this is the product NVIDIA is hoping universities and mid-sized installations start adopting to build their own petaflop supers. Gupta says Kepler-equipped supers of this size will be able to fit into 10 server racks and draw a relatively modest 400 KW of power, well within the reach of a modest-sized organization. If Kepler indeed becomes the enabling technology of petascale supercomputing for the masses, NVIDIA will have delivered another GPU that, once again, changed the game in HPC.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This