NVIDIA Launches Kepler Into HPC

By Michael Feldman

May 15, 2012

NVIDIA has introduced its first Kepler-generation GPU product for high performance computing, and revealed some of the inner working of the new architecture. The announcement took place at the kickoff of the company’s GPU Technology Conference (GTC) taking place this week in San Jose, California.

Kepler’s HPC debut comes at time when NVIDIA has established itself as the go-to chip vendor for heterogeneous supercomputing. With Intel’s MIC product launch several months away and AMD still primarily focused on the consumer space with its CPU-GPU Fusion processors, NVIDIA has enjoyed free reign in the HPC acceleration business.

And it appears to be turning into quite a business. IDC is reporting that 75 percent of total HPC customer will use GPUs by 2014. And according to Sumit Gupta, NVIDIA’s senior director of the Tesla GPU Computing business unit, by the end of this year, 50 to 60 percent of the top apps at the big supercomputing labs around the world will be accelerated by GPUs. That level of interest is also reflected in CUDA toolkit downloads, which Gupta reports is occurring at the rate of one every 60 seconds. “We’re seeing a true liftoff in the number of application accelerated by GPUs,” he says.

In 2010, NVIDIA changed the game in HPC with the Fermi chips, introducing error corrected memory and some serious double precision floating point performance — 665 gigaflops, to be precise. Gupta believes the feature set they’re bringing to the table with the Kepler architecture will provide the basis for same sort of technological discontinuity.

One of the more interesting pieces of the Kepler HPC technology is the so-called “Hyper-Q” capability. Essentially it allows the GPU to work on as many as 32 CPU-driven MPI tasks simultaneously. With Fermi, the GPU was only able to run a single MPI task at a time (although multiple tasks could be on-chip, waiting to be switched to). So if a task only happens to use a quarter of the cores, the remain three quarters of the GPU was idle. Now with up 32 tasks running concurrently, both the CPU host and the GPU accelerator should be better utilized, with less idle time all around.

Another notable Kepler enhancement is something the Nvidians call “dynamic parallelism.” This allows the GPU to do a lot more processing independently of the CPU. The traditional model was for the CPU to send the GPU some work via a CUDA call; when it was done, the GPU would have to wait for more work from the host.

With dynamic parallelism, that kind of ping-pong processing can be greatly reduced. CUDA functions that previously would have been launched from the CPU, can now be called from the CUDA code itself on the GPU. Performance should be better since communication overhead between the two chips will be reduced. In essence, more of the application will end up on the GPU, allowing the CPU to free to do its own thing.

Perhaps more importantly, notes Gupta, is that this capability will allow developers to write applications for the GPU much more naturally, since much of the CPU-to-GPU calls can be done away with. And it will allow more complex and irregular types of applications (like adaptive mesh codes) to be ported more easily to the GPU. “This is a ground-breaking change,” says Gupta.

But the fundamental upgrade to Kepler is its increased core count. To make that happen, the engineers did a complete redesign of the GPU’s streaming multiprocessor (SM), the internal structure that provides thread processing. In Fermi, each SM contained 32 cores; while in Kepler, that’s been bumped way up to 192.

Part of that was possible thanks to the smaller 28nm process technology for the Kepler silicon, but the engineers also freed up additional die real estate by compressing the control logic on the multiprocessor. The result is that each Kepler SM — now referred to as SM extreme, or SMX — has six times as many cores as its predecessor.

To go along with the extra parallelism, the NVIDIA engineers reduced the clock frequency those cores are running at by about half. In doing so, they were able to realize about three times the performance per watt of the Fermi GPU. If you’re keeping score at home, that means a Kepler GPU that draws the same 225 watt TDP as the latest Fermi Tesla part should deliver just shy of 2 teraflops of double precision.

That product, however, will not be NVIDIA’s first Kepler Tesla that it announced today at the GTC event. Known as the K10, this initial HPC Kepler offering will house two consumer-grade GK104 GPUs, the same chip used in the Kepler GeForce products that were introduced in March.

As such it lacks the nifty high-end Hyper-Q and dynamic parallelism features mentioned above. Plus it’s rather underpowered in the double precision (DP) floating point department, managing only 190 gigaflops — less than a third that of the Fermi Tesla M2090.

Where the K10 shines is in single precision (SP), delivering 4.48 teraflops across the two GPUs, which is three and a half times the SP floppery of the Fermi M2090 hardware. This makes it especially suitable for applications like image/signal processing, seismic codes, and maybe some mixed precision algorithms in academia. According to NVIDIA, initial testing with LAMMPS, NAMD, seismic processing, and certain integer-centric defense codes showed performance increases between 1.5X and 2.0X compared to the Fermi M2090. Petrobras, the Brazilian oil and gas company, reported a 1.8X speedup on its seismic application with the K10.

The new card is also plenty fast at data transfer speeds, sporting 320 GB/sec of memory bandwidth and a host connection of 16 GB/sec, courtesy of PCIe Gen 3. Memory capacity is a respectable 8 GB, which is shared between the two GPUs on the card.

The K10 is shipping this month and will be initially available in products from IBM, HP, Dell, SGI, Appro, and Supermicro.

Further down the road is the K20, which will represent NVIDIA’s first true Kepler-generation supercomputing Tesla. The K20 will be based on the GK110 GPU, which is the one built for HPC duty. It will fold in the Hyper-Q and dynamic parallelism technology, and will be fully outfitted for double precision. For the time being, NVIDIA is keeping mum on the peak performance, but this is the chip that could be flirting with 2 DP teraflops. In any case, we’ll have to wait until later in the year to get the actual specs.

The K20 will be the Tesla deployed in “Titan” supercomputer at Oak Ridge National Lab, and in the NCSA’s “Blue Waters” system at the University of Illinois. Some of new chips could be installed in these top supers as early as the fall, but volume production of the K20 is slated for Q4.

Although the multi-petaflop systems mentioned above will get first crack at the K20, this is the product NVIDIA is hoping universities and mid-sized installations start adopting to build their own petaflop supers. Gupta says Kepler-equipped supers of this size will be able to fit into 10 server racks and draw a relatively modest 400 KW of power, well within the reach of a modest-sized organization. If Kepler indeed becomes the enabling technology of petascale supercomputing for the masses, NVIDIA will have delivered another GPU that, once again, changed the game in HPC.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NSF Budget Approved for $8.3B in 2020, a 2.5% Increase

January 16, 2020

The National Science Foundation (NSF) has been spared a President Trump-proposed budget cut that would have rolled back its funding to 2012 levels. Congress passed legislation last month that sets the budget at $8.3 bill Read more…

By Staff report

NOAA Updates Its Massive, Supercomputer-Generated Climate Dataset

January 15, 2020

As Australia burns, understanding and mitigating the climate crisis is more urgent than ever. Now, by leveraging the computing resources at the National Energy Research Scientific Computing Center (NERSC), the U.S. National Oceanic and Atmospheric Administration (NOAA) has updated its 20th Century Reanalysis Project (20CR) dataset... Read more…

By Oliver Peckham

Atos-AMD System to Quintuple Supercomputing Power at European Centre for Medium-Range Weather Forecasts

January 15, 2020

The United Kingdom-based European Centre for Medium-Range Weather Forecasts (ECMWF), a supercomputer-powered weather forecasting organization backed by most of the countries in Europe, has signed a four-year, $89-million Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, the gold standard programming languages for fast performance Read more…

By John Russell

Quantum Computing, ML Drive 2019 Patent Awards

January 14, 2020

The dizzying pace of technology innovation often fueled by the growing availability of computing horsepower is underscored by the race to develop unique designs and application that can be patented. Among the goals of ma Read more…

By George Leopold

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

Andrew Jones Joins Microsoft Azure HPC Team

January 13, 2020

Andrew Jones announced today he is joining Microsoft as part of the Azure HPC engineering & product team in early February. Jones makes the move after nearly 12 years at the UK HPC consultancy Numerical Algorithms Gr Read more…

By Staff report

Atos-AMD System to Quintuple Supercomputing Power at European Centre for Medium-Range Weather Forecasts

January 15, 2020

The United Kingdom-based European Centre for Medium-Range Weather Forecasts (ECMWF), a supercomputer-powered weather forecasting organization backed by most of Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

White House AI Regulatory Guidelines: ‘Remove Impediments to Private-sector AI Innovation’

January 9, 2020

When it comes to new technology, it’s been said government initially stays uninvolved – then gets too involved. The White House’s guidelines for federal a Read more…

By Doug Black

IBM Touts Quantum Network Growth, Improving QC Quality, and Battery Research

January 8, 2020

IBM today announced its Q (quantum) Network community had grown to 100-plus – Delta Airlines and Los Alamos National Laboratory are among most recent addition Read more…

By John Russell

HPCwire Awards Highlight Supercomputing Achievements in the Sciences

January 7, 2020

In November at SC19 in Denver, the HPCwire Readers’ and Editors’ Choice awards program celebrated its 16th year of honoring remarkable achievements in high-performance computing. With categories ranging from Best Use of HPC in Energy to Top HPC-Enabled Scientific Achievement, many of the winners contributed to groundbreaking developments in the sciences. This editorial highlights those awards. Read more…

By Oliver Peckham

Blasts from the (Recent) Past and Hopes for the Future

December 23, 2019

What does 2020 look like to you? What did 2019 look like? Lots happened but the main trends were carryovers from 2018 – AI messaging again blanketed everything; the roll-out of new big machines and exascale announcements continued; processor diversity and system disaggregation kicked up a notch; hyperscalers continued flexing their muscles (think AWS and its Graviton2 processor); and the U.S. and China continued their awkward trade war. Read more…

By John Russell

ARPA-E Applies ML to Power Generation Designs

December 19, 2019

The U.S. Energy Department’s research arm is leveraging machine learning technologies to simplify the design process for energy systems ranging from photovolt Read more…

By George Leopold

Focused on ‘Silicon TAM,’ Intel Puts Gary Patton, Former GlobalFoundries CTO, in Charge of Design Enablement

December 12, 2019

Change within Intel’s upper management – and to its company mission – has continued as a published report has disclosed that chip technology heavyweight G Read more…

By Doug Black

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This