OpenACC Starts to Gather Developer Mindshare

By Michael Feldman

May 17, 2012

PGI, Cray, and CAPS enterprise are moving quickly to get their new OpenACC-supported compilers into the hands of GPGPU developers. At NVIDIA’s GPU Technology Conference (GTC) this week, there was plenty of discussion around the new HPC accelerator framework, and all three OpenACC compiler makers, as well as NVIDIA, were talking up the technology.

Announced at the Supercomputing Conference (SC11) last November, OpenACC is an open standard API developed by NVIDIA, PGI, Cray, and CAPS, to provide a high-level programming framework for programming accelerators like GPUs. OpenACC uses compiler directives, which programmers insert into high-level source (e.g., C, C++ or Fortran), to tell the compiler to execute specific pieces of the code on the accelerator hardware.

GTC conference-goers had plenty of opportunity to encounter OpenACC this week. There two OpenACC tutorials for would-be developers, one by NVIDIA, and the other by CAPS enterprise. In addition, there were four other sessions hosted by Cray, CAPS, and PGI throughout the week. That’s not counting the numerous mentions OpenACC got during other presentations involving GPGPU programming.

The technology is still in its infancy though. The PGI and Cray compilers are pre-production versions. CAPS first commercial offering is just two weeks old.

The initial goal of OpenACC is to bring more developers (and codes) into GPU computing, especially those not being served by the lower-level programming frameworks like CUDA and OpenCL. While CUDA is widely used in universities and in the technical computing realm, and OpenCL is emerging as an open standard for parallel computing, neither is particular attractive to commercial developers.

Most programmers are used to writing high-level code that focuses on the problem at hand, without have to worry about the vagaries of the underlying hardware. That hardware independence is also what makes OpenACC attractive for codes that need to span different processor architectures.

That assumes, of course, that compiler will support multiple accelerator chips. The first crop of OpenACC-enabled compilers from PGI, CAPS and Cray only generate code for NVIDIA GPUs — not too surprising when you consider NVIDIA’s current dominance in HPC acceleration. However all of the compiler efforts plan to widen the aperture of hardware support.

CAPS is perhaps most aggressive in this regard. According to CAPS CTO François Bodin, his company plans to add OpenACC support for AMD GPUs, x86 multicore CPUs and even the Tegra 3 microprocessor, an ARM-GPU design that will be used to power an experimental HPC clusters at the Barcelona Supercomputing Center (BSC). Bodin also said that they have an Intel MIC (Many Integrated Core) port of OpenACC in the pipeline. All of these compiler ports should be available later this year.

PGI is keeping its OpenACC development plans a little closer to the vest. But according to PGI compiler engineer Michael Wolfe, they have received requests for OpenACC support for nearly every processor and co-processor used in high performance computing. The compiler maker will undoubtedly be developing some of these over the next year.

Likewise for Cray, although its OpenACC compiler support is focused on the underlying accelerators of its own XK6 supercomputers. At this point, that’s confined to NVIDIA GPUs. Cray (which also carries CAPS and PGI compilers for its customers) has a unique OpenACC offering in that it supports those directives in PGAS languages Co-Array Fortran and Unified Parallel C (UPC) on the XK6.

Besides its applicability to multiple hardware platforms, OpenACC is just plain easier to use when you have lots of existing code. For one thing, OpenACC lets you attack the acceleration in steps. CUDA and OpenCL ports usually require code rewrites of at least a sizeable chunk of the application being accelerated, using low-level APIs. With OpenACC, the programmer just has to insert high-level directives into existing source, and this can be done iteratively, gradually putting more and more of the code under OpenACC control. This, say, PGI’s Wolfe, is “a hell of a lot more productive” than the low-level approach.

Even at the national labs and research centers, where there are computer scientists aplenty, OpenACC is starting to be recognized as an easier path to bring acceleration to hundreds of thousands of line of legacy codes. NASA Ames is already using PGI’s compiler to speed up some of their CFD codes on one of their GPU clusters. And the upcoming deployments of multi-petaflop GPU-based supercomputers like “Titan” at Oak Ridge National Lab, should provide a lot more opportunities for OpenACC-based application development. Titan project director Buddy Bland is on record endorsing the technology for software development on that machine.

As with all parallel programming though, there’s no free lunch to be had. In general, the programmer is probably going to sacrifice some runtime performance (compared to CUDA, for example) for the sake of programmer productivity. But there seems to be a general consensus that intelligent use of directives can easily get you to within 10 or 15 percent the performance of a low-level implementation. But as CAPS’ Bodin explains, to get in that close, “you have to know what you’re doing.” On the other hand, as the compiler technology matures and developers get more adept with OpenACC, the performance gap could narrow even further.

The other problem is just a lack of accelerator diversity at the moment. With Intel MIC waiting in the wings, and AMD still pretty much a no-show with server-side GPUs, there’s no immediate need to support anything but NVIDIA’s GPU architecture right now. Worse, both Intel and AMD are backing other parallel computing frameworks that they are rolling into to their accelerator programs: OpenMP, Cilk Plus, and TBB for Intel; OpenCL and C++ AMP for AMD.

Fortunately, it probably doesn’t matter that Intel and AMD haven’t hopped on the OpenACC bandwagon. PGI and CAPS can still produce compilers targeting Intel MIC or AMD GPUs, or whatever else comes along. And as long as there are at least two compiler vendors offering such support, the community should be satisfied.

The end game, though, is to fold the OpenACC capabilities into OpenMP. If and when that happens, both Intel, AMD will throw their support behind it. OpenMP has been around for 15 years and is a true industry standard.

There is currently a Working Group on Accelerators in the OpenMP consortium, which is looking at incorporating accelerator directives into the next OpenMP release. And while those directives will be based on the OpenACC directives, they are not likely to be adopted as is. There’s a real risk that if the process gets drawn out much longer and OpenACC captures a critical mass of users, there will end up being two directive-based accelerator standards to choose from.

Twas ever thus.

Related Articles

CAPS Entreprise Now Supports OpenACC Standard

OpenMP Announces Improvements for Multicore and Accelerators

OpenACC Support Available With New PGI Accelerator Fortran and C Compilers

NVIDIA Announces Initial Results of Directives-Based GPU Computing Program

NVIDIA Eyes Post-CUDA Era of GPU Computing

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This