OpenACC Starts to Gather Developer Mindshare

By Michael Feldman

May 17, 2012

PGI, Cray, and CAPS enterprise are moving quickly to get their new OpenACC-supported compilers into the hands of GPGPU developers. At NVIDIA’s GPU Technology Conference (GTC) this week, there was plenty of discussion around the new HPC accelerator framework, and all three OpenACC compiler makers, as well as NVIDIA, were talking up the technology.

Announced at the Supercomputing Conference (SC11) last November, OpenACC is an open standard API developed by NVIDIA, PGI, Cray, and CAPS, to provide a high-level programming framework for programming accelerators like GPUs. OpenACC uses compiler directives, which programmers insert into high-level source (e.g., C, C++ or Fortran), to tell the compiler to execute specific pieces of the code on the accelerator hardware.

GTC conference-goers had plenty of opportunity to encounter OpenACC this week. There two OpenACC tutorials for would-be developers, one by NVIDIA, and the other by CAPS enterprise. In addition, there were four other sessions hosted by Cray, CAPS, and PGI throughout the week. That’s not counting the numerous mentions OpenACC got during other presentations involving GPGPU programming.

The technology is still in its infancy though. The PGI and Cray compilers are pre-production versions. CAPS first commercial offering is just two weeks old.

The initial goal of OpenACC is to bring more developers (and codes) into GPU computing, especially those not being served by the lower-level programming frameworks like CUDA and OpenCL. While CUDA is widely used in universities and in the technical computing realm, and OpenCL is emerging as an open standard for parallel computing, neither is particular attractive to commercial developers.

Most programmers are used to writing high-level code that focuses on the problem at hand, without have to worry about the vagaries of the underlying hardware. That hardware independence is also what makes OpenACC attractive for codes that need to span different processor architectures.

That assumes, of course, that compiler will support multiple accelerator chips. The first crop of OpenACC-enabled compilers from PGI, CAPS and Cray only generate code for NVIDIA GPUs — not too surprising when you consider NVIDIA’s current dominance in HPC acceleration. However all of the compiler efforts plan to widen the aperture of hardware support.

CAPS is perhaps most aggressive in this regard. According to CAPS CTO François Bodin, his company plans to add OpenACC support for AMD GPUs, x86 multicore CPUs and even the Tegra 3 microprocessor, an ARM-GPU design that will be used to power an experimental HPC clusters at the Barcelona Supercomputing Center (BSC). Bodin also said that they have an Intel MIC (Many Integrated Core) port of OpenACC in the pipeline. All of these compiler ports should be available later this year.

PGI is keeping its OpenACC development plans a little closer to the vest. But according to PGI compiler engineer Michael Wolfe, they have received requests for OpenACC support for nearly every processor and co-processor used in high performance computing. The compiler maker will undoubtedly be developing some of these over the next year.

Likewise for Cray, although its OpenACC compiler support is focused on the underlying accelerators of its own XK6 supercomputers. At this point, that’s confined to NVIDIA GPUs. Cray (which also carries CAPS and PGI compilers for its customers) has a unique OpenACC offering in that it supports those directives in PGAS languages Co-Array Fortran and Unified Parallel C (UPC) on the XK6.

Besides its applicability to multiple hardware platforms, OpenACC is just plain easier to use when you have lots of existing code. For one thing, OpenACC lets you attack the acceleration in steps. CUDA and OpenCL ports usually require code rewrites of at least a sizeable chunk of the application being accelerated, using low-level APIs. With OpenACC, the programmer just has to insert high-level directives into existing source, and this can be done iteratively, gradually putting more and more of the code under OpenACC control. This, say, PGI’s Wolfe, is “a hell of a lot more productive” than the low-level approach.

Even at the national labs and research centers, where there are computer scientists aplenty, OpenACC is starting to be recognized as an easier path to bring acceleration to hundreds of thousands of line of legacy codes. NASA Ames is already using PGI’s compiler to speed up some of their CFD codes on one of their GPU clusters. And the upcoming deployments of multi-petaflop GPU-based supercomputers like “Titan” at Oak Ridge National Lab, should provide a lot more opportunities for OpenACC-based application development. Titan project director Buddy Bland is on record endorsing the technology for software development on that machine.

As with all parallel programming though, there’s no free lunch to be had. In general, the programmer is probably going to sacrifice some runtime performance (compared to CUDA, for example) for the sake of programmer productivity. But there seems to be a general consensus that intelligent use of directives can easily get you to within 10 or 15 percent the performance of a low-level implementation. But as CAPS’ Bodin explains, to get in that close, “you have to know what you’re doing.” On the other hand, as the compiler technology matures and developers get more adept with OpenACC, the performance gap could narrow even further.

The other problem is just a lack of accelerator diversity at the moment. With Intel MIC waiting in the wings, and AMD still pretty much a no-show with server-side GPUs, there’s no immediate need to support anything but NVIDIA’s GPU architecture right now. Worse, both Intel and AMD are backing other parallel computing frameworks that they are rolling into to their accelerator programs: OpenMP, Cilk Plus, and TBB for Intel; OpenCL and C++ AMP for AMD.

Fortunately, it probably doesn’t matter that Intel and AMD haven’t hopped on the OpenACC bandwagon. PGI and CAPS can still produce compilers targeting Intel MIC or AMD GPUs, or whatever else comes along. And as long as there are at least two compiler vendors offering such support, the community should be satisfied.

The end game, though, is to fold the OpenACC capabilities into OpenMP. If and when that happens, both Intel, AMD will throw their support behind it. OpenMP has been around for 15 years and is a true industry standard.

There is currently a Working Group on Accelerators in the OpenMP consortium, which is looking at incorporating accelerator directives into the next OpenMP release. And while those directives will be based on the OpenACC directives, they are not likely to be adopted as is. There’s a real risk that if the process gets drawn out much longer and OpenACC captures a critical mass of users, there will end up being two directive-based accelerator standards to choose from.

Twas ever thus.

Related Articles

CAPS Entreprise Now Supports OpenACC Standard

OpenMP Announces Improvements for Multicore and Accelerators

OpenACC Support Available With New PGI Accelerator Fortran and C Compilers

NVIDIA Announces Initial Results of Directives-Based GPU Computing Program

NVIDIA Eyes Post-CUDA Era of GPU Computing

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This