OpenACC Starts to Gather Developer Mindshare

By Michael Feldman

May 17, 2012

PGI, Cray, and CAPS enterprise are moving quickly to get their new OpenACC-supported compilers into the hands of GPGPU developers. At NVIDIA’s GPU Technology Conference (GTC) this week, there was plenty of discussion around the new HPC accelerator framework, and all three OpenACC compiler makers, as well as NVIDIA, were talking up the technology.

Announced at the Supercomputing Conference (SC11) last November, OpenACC is an open standard API developed by NVIDIA, PGI, Cray, and CAPS, to provide a high-level programming framework for programming accelerators like GPUs. OpenACC uses compiler directives, which programmers insert into high-level source (e.g., C, C++ or Fortran), to tell the compiler to execute specific pieces of the code on the accelerator hardware.

GTC conference-goers had plenty of opportunity to encounter OpenACC this week. There two OpenACC tutorials for would-be developers, one by NVIDIA, and the other by CAPS enterprise. In addition, there were four other sessions hosted by Cray, CAPS, and PGI throughout the week. That’s not counting the numerous mentions OpenACC got during other presentations involving GPGPU programming.

The technology is still in its infancy though. The PGI and Cray compilers are pre-production versions. CAPS first commercial offering is just two weeks old.

The initial goal of OpenACC is to bring more developers (and codes) into GPU computing, especially those not being served by the lower-level programming frameworks like CUDA and OpenCL. While CUDA is widely used in universities and in the technical computing realm, and OpenCL is emerging as an open standard for parallel computing, neither is particular attractive to commercial developers.

Most programmers are used to writing high-level code that focuses on the problem at hand, without have to worry about the vagaries of the underlying hardware. That hardware independence is also what makes OpenACC attractive for codes that need to span different processor architectures.

That assumes, of course, that compiler will support multiple accelerator chips. The first crop of OpenACC-enabled compilers from PGI, CAPS and Cray only generate code for NVIDIA GPUs — not too surprising when you consider NVIDIA’s current dominance in HPC acceleration. However all of the compiler efforts plan to widen the aperture of hardware support.

CAPS is perhaps most aggressive in this regard. According to CAPS CTO François Bodin, his company plans to add OpenACC support for AMD GPUs, x86 multicore CPUs and even the Tegra 3 microprocessor, an ARM-GPU design that will be used to power an experimental HPC clusters at the Barcelona Supercomputing Center (BSC). Bodin also said that they have an Intel MIC (Many Integrated Core) port of OpenACC in the pipeline. All of these compiler ports should be available later this year.

PGI is keeping its OpenACC development plans a little closer to the vest. But according to PGI compiler engineer Michael Wolfe, they have received requests for OpenACC support for nearly every processor and co-processor used in high performance computing. The compiler maker will undoubtedly be developing some of these over the next year.

Likewise for Cray, although its OpenACC compiler support is focused on the underlying accelerators of its own XK6 supercomputers. At this point, that’s confined to NVIDIA GPUs. Cray (which also carries CAPS and PGI compilers for its customers) has a unique OpenACC offering in that it supports those directives in PGAS languages Co-Array Fortran and Unified Parallel C (UPC) on the XK6.

Besides its applicability to multiple hardware platforms, OpenACC is just plain easier to use when you have lots of existing code. For one thing, OpenACC lets you attack the acceleration in steps. CUDA and OpenCL ports usually require code rewrites of at least a sizeable chunk of the application being accelerated, using low-level APIs. With OpenACC, the programmer just has to insert high-level directives into existing source, and this can be done iteratively, gradually putting more and more of the code under OpenACC control. This, say, PGI’s Wolfe, is “a hell of a lot more productive” than the low-level approach.

Even at the national labs and research centers, where there are computer scientists aplenty, OpenACC is starting to be recognized as an easier path to bring acceleration to hundreds of thousands of line of legacy codes. NASA Ames is already using PGI’s compiler to speed up some of their CFD codes on one of their GPU clusters. And the upcoming deployments of multi-petaflop GPU-based supercomputers like “Titan” at Oak Ridge National Lab, should provide a lot more opportunities for OpenACC-based application development. Titan project director Buddy Bland is on record endorsing the technology for software development on that machine.

As with all parallel programming though, there’s no free lunch to be had. In general, the programmer is probably going to sacrifice some runtime performance (compared to CUDA, for example) for the sake of programmer productivity. But there seems to be a general consensus that intelligent use of directives can easily get you to within 10 or 15 percent the performance of a low-level implementation. But as CAPS’ Bodin explains, to get in that close, “you have to know what you’re doing.” On the other hand, as the compiler technology matures and developers get more adept with OpenACC, the performance gap could narrow even further.

The other problem is just a lack of accelerator diversity at the moment. With Intel MIC waiting in the wings, and AMD still pretty much a no-show with server-side GPUs, there’s no immediate need to support anything but NVIDIA’s GPU architecture right now. Worse, both Intel and AMD are backing other parallel computing frameworks that they are rolling into to their accelerator programs: OpenMP, Cilk Plus, and TBB for Intel; OpenCL and C++ AMP for AMD.

Fortunately, it probably doesn’t matter that Intel and AMD haven’t hopped on the OpenACC bandwagon. PGI and CAPS can still produce compilers targeting Intel MIC or AMD GPUs, or whatever else comes along. And as long as there are at least two compiler vendors offering such support, the community should be satisfied.

The end game, though, is to fold the OpenACC capabilities into OpenMP. If and when that happens, both Intel, AMD will throw their support behind it. OpenMP has been around for 15 years and is a true industry standard.

There is currently a Working Group on Accelerators in the OpenMP consortium, which is looking at incorporating accelerator directives into the next OpenMP release. And while those directives will be based on the OpenACC directives, they are not likely to be adopted as is. There’s a real risk that if the process gets drawn out much longer and OpenACC captures a critical mass of users, there will end up being two directive-based accelerator standards to choose from.

Twas ever thus.

Related Articles

CAPS Entreprise Now Supports OpenACC Standard

OpenMP Announces Improvements for Multicore and Accelerators

OpenACC Support Available With New PGI Accelerator Fortran and C Compilers

NVIDIA Announces Initial Results of Directives-Based GPU Computing Program

NVIDIA Eyes Post-CUDA Era of GPU Computing

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Leads Alpha MLPerf Benchmarking Round

December 12, 2018

Seven months after the launch of its AI benchmarking suite, the MLPerf consortium is releasing the first round of results based on submissions from Nvidia, Google and Intel. Of the seven benchmarks encompassed in version Read more…

By Tiffany Trader

Neural Network ‘Synapse’ Technology Showcased at IEEE Meeting

December 12, 2018

There’s nice snapshot of advancing work to develop improved neural network “synapse” technologies posted yesterday on IEEE Spectrum. Lower power, ease of use, manufacturability, and performance are all key paramete Read more…

By John Russell

IBM, Nvidia in AI Data Pipeline, Processing, Storage Union

December 11, 2018

IBM and Nvidia today announced a new turnkey AI solution that combines IBM Spectrum Scale scale-out file storage with Nvidia’s GPU-based DGX-1 AI server to provide what the companies call the “the highest performance Read more…

By Doug Black

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Blurring the Lines Between HPC and AI @ SC18

The dominant topic at SC18 was the convergence of HPC and Artificial Intelligence (AI) with some of the biggest research and enterprise HPC users providing perspectives on how HPC and AI are moving closer together. Read more…

Is Amazon’s Plunge into Server Chips a Watershed Moment?

December 11, 2018

For several years now the big cloud providers – Amazon, Microsoft Azure, Google, et al – have been transforming from technology consumers into technology creators in hardware and software. The most recent example bei Read more…

By John Russell

Nvidia Leads Alpha MLPerf Benchmarking Round

December 12, 2018

Seven months after the launch of its AI benchmarking suite, the MLPerf consortium is releasing the first round of results based on submissions from Nvidia, Goog Read more…

By Tiffany Trader

IBM, Nvidia in AI Data Pipeline, Processing, Storage Union

December 11, 2018

IBM and Nvidia today announced a new turnkey AI solution that combines IBM Spectrum Scale scale-out file storage with Nvidia’s GPU-based DGX-1 AI server to pr Read more…

By Doug Black

Is Amazon’s Plunge into Server Chips a Watershed Moment?

December 11, 2018

For several years now the big cloud providers – Amazon, Microsoft Azure, Google, et al – have been transforming from technology consumers into technology cr Read more…

By John Russell

Mellanox Uses Univa to Extend Silicon Design HPC Operation to Azure

December 11, 2018

Call it a corollary to Murphy’s Law: When a system is most in demand, when end users are most dependent on the system performing as required, when it’s crunch time – that’s when the system is most likely to blow up. Or make you wait in line to use it. Read more…

By Doug Black

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--the study of shapes--seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are being recast to use topology. For instance, looking for weather and climate patterns. Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This