OpenACC Starts to Gather Developer Mindshare

By Michael Feldman

May 17, 2012

PGI, Cray, and CAPS enterprise are moving quickly to get their new OpenACC-supported compilers into the hands of GPGPU developers. At NVIDIA’s GPU Technology Conference (GTC) this week, there was plenty of discussion around the new HPC accelerator framework, and all three OpenACC compiler makers, as well as NVIDIA, were talking up the technology.

Announced at the Supercomputing Conference (SC11) last November, OpenACC is an open standard API developed by NVIDIA, PGI, Cray, and CAPS, to provide a high-level programming framework for programming accelerators like GPUs. OpenACC uses compiler directives, which programmers insert into high-level source (e.g., C, C++ or Fortran), to tell the compiler to execute specific pieces of the code on the accelerator hardware.

GTC conference-goers had plenty of opportunity to encounter OpenACC this week. There two OpenACC tutorials for would-be developers, one by NVIDIA, and the other by CAPS enterprise. In addition, there were four other sessions hosted by Cray, CAPS, and PGI throughout the week. That’s not counting the numerous mentions OpenACC got during other presentations involving GPGPU programming.

The technology is still in its infancy though. The PGI and Cray compilers are pre-production versions. CAPS first commercial offering is just two weeks old.

The initial goal of OpenACC is to bring more developers (and codes) into GPU computing, especially those not being served by the lower-level programming frameworks like CUDA and OpenCL. While CUDA is widely used in universities and in the technical computing realm, and OpenCL is emerging as an open standard for parallel computing, neither is particular attractive to commercial developers.

Most programmers are used to writing high-level code that focuses on the problem at hand, without have to worry about the vagaries of the underlying hardware. That hardware independence is also what makes OpenACC attractive for codes that need to span different processor architectures.

That assumes, of course, that compiler will support multiple accelerator chips. The first crop of OpenACC-enabled compilers from PGI, CAPS and Cray only generate code for NVIDIA GPUs — not too surprising when you consider NVIDIA’s current dominance in HPC acceleration. However all of the compiler efforts plan to widen the aperture of hardware support.

CAPS is perhaps most aggressive in this regard. According to CAPS CTO François Bodin, his company plans to add OpenACC support for AMD GPUs, x86 multicore CPUs and even the Tegra 3 microprocessor, an ARM-GPU design that will be used to power an experimental HPC clusters at the Barcelona Supercomputing Center (BSC). Bodin also said that they have an Intel MIC (Many Integrated Core) port of OpenACC in the pipeline. All of these compiler ports should be available later this year.

PGI is keeping its OpenACC development plans a little closer to the vest. But according to PGI compiler engineer Michael Wolfe, they have received requests for OpenACC support for nearly every processor and co-processor used in high performance computing. The compiler maker will undoubtedly be developing some of these over the next year.

Likewise for Cray, although its OpenACC compiler support is focused on the underlying accelerators of its own XK6 supercomputers. At this point, that’s confined to NVIDIA GPUs. Cray (which also carries CAPS and PGI compilers for its customers) has a unique OpenACC offering in that it supports those directives in PGAS languages Co-Array Fortran and Unified Parallel C (UPC) on the XK6.

Besides its applicability to multiple hardware platforms, OpenACC is just plain easier to use when you have lots of existing code. For one thing, OpenACC lets you attack the acceleration in steps. CUDA and OpenCL ports usually require code rewrites of at least a sizeable chunk of the application being accelerated, using low-level APIs. With OpenACC, the programmer just has to insert high-level directives into existing source, and this can be done iteratively, gradually putting more and more of the code under OpenACC control. This, say, PGI’s Wolfe, is “a hell of a lot more productive” than the low-level approach.

Even at the national labs and research centers, where there are computer scientists aplenty, OpenACC is starting to be recognized as an easier path to bring acceleration to hundreds of thousands of line of legacy codes. NASA Ames is already using PGI’s compiler to speed up some of their CFD codes on one of their GPU clusters. And the upcoming deployments of multi-petaflop GPU-based supercomputers like “Titan” at Oak Ridge National Lab, should provide a lot more opportunities for OpenACC-based application development. Titan project director Buddy Bland is on record endorsing the technology for software development on that machine.

As with all parallel programming though, there’s no free lunch to be had. In general, the programmer is probably going to sacrifice some runtime performance (compared to CUDA, for example) for the sake of programmer productivity. But there seems to be a general consensus that intelligent use of directives can easily get you to within 10 or 15 percent the performance of a low-level implementation. But as CAPS’ Bodin explains, to get in that close, “you have to know what you’re doing.” On the other hand, as the compiler technology matures and developers get more adept with OpenACC, the performance gap could narrow even further.

The other problem is just a lack of accelerator diversity at the moment. With Intel MIC waiting in the wings, and AMD still pretty much a no-show with server-side GPUs, there’s no immediate need to support anything but NVIDIA’s GPU architecture right now. Worse, both Intel and AMD are backing other parallel computing frameworks that they are rolling into to their accelerator programs: OpenMP, Cilk Plus, and TBB for Intel; OpenCL and C++ AMP for AMD.

Fortunately, it probably doesn’t matter that Intel and AMD haven’t hopped on the OpenACC bandwagon. PGI and CAPS can still produce compilers targeting Intel MIC or AMD GPUs, or whatever else comes along. And as long as there are at least two compiler vendors offering such support, the community should be satisfied.

The end game, though, is to fold the OpenACC capabilities into OpenMP. If and when that happens, both Intel, AMD will throw their support behind it. OpenMP has been around for 15 years and is a true industry standard.

There is currently a Working Group on Accelerators in the OpenMP consortium, which is looking at incorporating accelerator directives into the next OpenMP release. And while those directives will be based on the OpenACC directives, they are not likely to be adopted as is. There’s a real risk that if the process gets drawn out much longer and OpenACC captures a critical mass of users, there will end up being two directive-based accelerator standards to choose from.

Twas ever thus.

Related Articles

CAPS Entreprise Now Supports OpenACC Standard

OpenMP Announces Improvements for Multicore and Accelerators

OpenACC Support Available With New PGI Accelerator Fortran and C Compilers

NVIDIA Announces Initial Results of Directives-Based GPU Computing Program

NVIDIA Eyes Post-CUDA Era of GPU Computing

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Portugal Launches Its First Supercomputer

July 12, 2019

Portugal has officially inaugurated its first-ever supercomputer. The unassumingly named “Bob” supercomputer is housed in the Minho Advanced Computer Center (MACC) at the University of Minho.  Bob was announced i Read more…

By Oliver Peckham

What’s New in HPC Research: Traffic Simulation, Performance Variations, Scheduling & More

July 11, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered servers for AI workloads, has expanded the program beyond th Read more…

By Doug Black

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

How AI Powers Up Data Management and Analytics

Companies are making more decisions based on data. However, the ability to intelligently process the growing volume of data is a bottleneck to extracting actionable insights. Read more…

Quantum Start-up Rigetti Acquires QxBranch; Bolsters App Dev Capability

July 11, 2019

Quantum startup Rigetti Computing announced today it acquired QxBranch, a quantum computing and data analytics software startup. The latest move marks what has been a busy year for Rigetti. Roughly one year ago, it annou Read more…

By John Russell

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

ISC19 Cluster Competition: HPCC Deep Dive

July 7, 2019

The biggest benchmark the student warriors tackled during the ISC19 Student Cluster Competition was the colossal HPC Challenge. This is a collection of benchmar Read more…

By Dan Olds

OLCF Bids Farewell to Its Titan Supercomputer

July 4, 2019

After seven years of faithful service, and a long reign as the United States' fastest supercomputer, the Cray XK7-based Titan supercomputer at the Oak Ridge Lea Read more…

By Staff report

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

Intel Partners with Baidu on Neural Network Training Chip

July 2, 2019

A pillar of Intel’s emerging AI product portfolio, its upcoming Nervana Neural Network Processor for training (NNP-T), will be a collaborative development eff Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This