NVIDIA Works On CPU Co-Dependency Issues with Kepler GPU

By Michael Feldman

May 22, 2012

With Intel’s manycore MIC coprocessor looming on the horizon, NVIDIA’s is counting on its upcoming K20 Tesla to retain its dominance in the HPC accelerator marketplace. And while Intel has shared few technical details about its upcoming Knights Corner MIC, NVIDIA has conveniently provided a 24-page white paper (PDF) describing the inner workings of the GK110, the GPU that will power the K20 card for supercomputers.

If you’re a GPU programmer and like to get intimate with the silicon, or are just curious about where NVIDIA is heading with GPU computing, the GK110 paper should be on your summer reading list. It contains a nice description of the GK110 architecture and goes into some depth on the new features that this high-end Kepler brings to the HPC table.

As we described in our Kepler launch coverage last week at the GPU Technology Conference, the big new features in the architecture are Hyper-Q and Dynamic Parallelism. Both are changes that aim to relieve the CPU-GPU bottleneck, enabling the GPU to be better utilized for continuous processing, and freeing up the CPU for more mundane serial tasks. Those two features, however, are only available in the supercomputing-grade GK110, not the GK104 that powers the less powerful K10 card.

To recap, Hyper-Q allows the GPU to execute up to 32 MPI processes, CUDA streams, or threads at the same time. The Fermi GPU could only manage a single task at a time, which limited how much true parallelism the application could attain, and, in many cases, how much of the GPU could be utilized at any particular moment. Hyper-Q should automagically speed up a lot of existing CUDA applications without the need for any source code changes.

Dynamic parallelism, on the other hand, will require some source tweaking for existing GPU code, since it enables programmers to explicitly place more of the application on the graphics chip. It basically allows the GPU to generate work on its own, without having to rely on the CPU to keep feeding it. With dynamic parallelism, a kernel can now launch another kernel, enabling recursive and nested execution. For codes not yet ported to GPUs, this is good news, since this style of programming is a much more natural way to write applications.

Along those same lines is GPUDirect, a hardware/software-enabled feature that allows GPUs to talk to one another directly as peers, bypassing the CPU entirely. GPUDirect was present in Fermi, but the new Kepler has additional support that further lessens its reliance on the CPU. Using this feature, a GPU would be able to go through the NIC and exchange data with other GPUs on the network without CPU buffering in main memory. It also enables other PCIe attached devices, like SSDs, to directly access GPU data.

The NVIDIA engineers have also included some other tweaks to support greater application complexity. One of these is quadrupling the register count per thread compared to the Fermi architecture (from 63 to 255). Routines that do a lot of register spilling to memory because they have to deal with so many variables, like those in quantum chromodynamics, could see some pretty significant speed-ups, according to NVIDIA.

The GK110 also adds an extra 48K read-only data cache per multiprocessor for local functions. The new GPU also doubles the L2 cache capacity, to 1,536 KB, which helps data-dependent codes like physics solvers, ray tracing, and sparse matrix multiplication. This is all in addition to the 64 KB of multiprocessor memory (to divide between L1 and shared data) that Kepler inherited from Fermi, but which now supports more bandwidth for large reads.

All of this is geared to boost application performance in a big way. Here though, the paper hedges on the specifics, promising only “over 1 teraflop of double precision throughput.” NVIDIA is claiming the Kepler will deliver three times the performance per watt of the Fermi GPUs, but that doesn’t necessarily map to peak performance on a given chip. With regard to that metric, we should probably except a doubling or so of the Fermi Tesla’s 665 gigaflops for the top-of-the line Kepler hardware.

But application performance with the GK100 is expected to do much better that with the Fermi-generation GPUs. To a large degree that’s due to all the aforementioned CPU-offload features and other architectural tweaks. But a good chunk of the performance boost will be delivered via brute force, in the form of lots of cores.

The paper says the “full” GK110 implementation will have 15 streaming multiprocessor (SMX units), each of which has 192 cores. That would make the top Kepler a 2,880-core processor, which beats out the 512-core Fermi by a wide margin. But all those cores will be running at about half the clock speed as its predecessor. As the GK110 white paper explains:

For Kepler, our priority was performance per watt. While we made many optimizations that benefitted both area and power, we chose to optimize for power even at the expense of some added area cost, with a larger number of processing cores running at the lower, less power-hungry GPU clock.

The increased core count is enabled by a transistor shrink, in this case, TSMC’s 28nm process technology. In fact, the GK110 will be the largest processor ever built, at least the largest one that is not still sitting in a research lab somewhere. At 7.1 billion transistors, the GK110 is nearly twice the size of the new 4.3 billion transistor Radeon HD 7900 GPU from AMD. For some context, the new “Sandy Bridge” Xeon E5-2600 series CPUs are made up of less than 2.3 billion transistors.

There will also be two slightly smaller GK110 GPU parts, with 13 and 14 multiprocessors, respectively. Presumably the clock frequencies could be cranked up a bit on those if faster thread performance is desired, or down if lower wattage is the goal. In any case, the three GK110 variants suggests NVIDIA will offer a range of HPC products aimed at different price/performance/power points.

The first GK110 GPUs are expected to debut in the K20 Tesla cards in Q4. NVIDIA might be initially hard-pressed to ramp up volumes, especially since TSMC has a number of customers (AMD and Qualcomm, in particular) also vying for 28nm capacity. Supposedly though, NVIDIA chips are going to be priority at the foundry. Even so, such a big chip might still be a challenge for TSMC, from a yield perspective.

In any case, most, if not all of the early GK110s will likely end up in just two systems: the DOE’s Titan supercomputer at Oak Ridge National Lab and the NSF’s Blue Waters machine at NCSA. About 15,000 of the GK100s are expected to go into the Titan super, while the more conservative Blue Waters system will be equipped with around 3,000 of new GPUs.

NVIDIA expects to sell a lot more of them that over the next two or three years, until the “Maxwell” GPU kicks in. That architecture is expected to encompass CPU-GPU integration, the so-called “Project Denver” work that glues a 64-bit ARM CPU onto a CUDA GPU. As such, it will represent an architectural watershed for NVIDIA, but one that Kepler laid the groundwork for.

Kepler, and the GK110 in particular, is NVIDIA’s most general-purpose processor to date. By reducing the dependency of the GPU on the CPU, and making the GPU more capable of supporting complex types of processing, NVIDIA is not just trying to make the two architectures equal peers, but to make the GPU the star of the show. If NVIDIA continues to pursue this architectural trend line, the CPU, while necessary, could be reduced to the role of an OS microcontroller: fielding interrupts, managing I/O, and scheduling jobs. The GPU, meanwhile, would be able to encompass the high-value application processing, which not only conforms to NVIDIA’s philosophical bent, but also its business strategy.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

Doug Kothe on the Race to Build Exascale Applications

May 29, 2017

Ensuring there are applications ready to churn out useful science when the first U.S. exascale computers arrive in the 2021-2023 timeframe is Doug Kothe’s job Read more…

By John Russell

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This