ARM Gets Behind Accelerator Programming Project

By Michael Feldman

May 29, 2012

ARM Holdings, along with seven other academic and industrial partners, is ramping up a European research project designed to bring accelerator programming to mainstream developers. Known as CARP (Correct and Efficient Accelerator Programming), the effort is focused on developing hardware-independent programming tools around OpenCL, the industry standard parallel computing environment for GPUs and other accelerators.

CARP is aimed primarily at mobile and embedded applications, but given the program’s emphasis on power efficiency, performance, and hardware independence, the work should have some cross-over into high performance computing, especially in areas like medical imaging and other types of scientific visualization.

Funded by the European Commission (EC), which kicked in $3.5 million, CARP is already up and running. Although the effort is designed to expire in three years, the hope is that the software and tools developed under the project will get some industry traction and be adopted more generally, or at least in Europe. One way to do that was to bring in commercial partners, who could potentially garner wider support. In ARM Holdings, they certainly have that partner.

Although ARM is most widely known for its CPU portfolio, it also develops GPU designs, the Mali family of graphics engines, which it wants to pair up with its Cortex CPUs. Since mobile and embedded platforms are extremely sensitive to power usage, the energy-efficient GPUs is increasingly the architecture of choice for a variety of visual computing and data streaming applications. In some cases, the GPU is a separate chip on the board, but in the mobile space especially, the graphics engine is now sharing silicon with the CPU on the same die.

That makes for a somewhat more natural programming model compared to having to deal with discrete processors for the host and accelerator. But ARM, and the mobile/embedded ecosystem in general, have the same problem with GPUs as everyone else, namely a developer community that is loathe to program in the low-level industry standard for accelerators: OpenCL. The CARP approach is to map domain specific languages (DSL) to OpenCL, using a translation layer, called portable intermediate language or PIL. The PIL compiler is the secret sauce here since it glues the high-level, programmer-friendly DSLs to the low-level OpenCL API. It also encompasses performance and power optimizations.

Once the OpenCL code is generated, the application should be able to run on any GPU or accelerator with the appropriate driver and compiler support. Since AMD, NVIDIA, and ARM all support OpenCL, that toolchain will encompass nearly every accelerator-equipped platform on the planet.

Along with ARM, CARP brings in three commercial European software firms (Realeyes, Monoidics, and Rightware), and four research partners (Imperial College London, INRIA, RWTH Aachen University, and the University of Twente).

As a first cut, the CARP technology will be demonstrated on the real-time eye-tracking algorithms of Realeyes, whose purpose is to discern peoples’ emotions by reading their faces. (Realeyes fancies itself the “Google Analytics of eye movements and emotions.”) While that may seem like an esoteric application, apparently there is an 800M€ market for such software. The goal here is to be able to use the CARP language tools to compute these algorithms in real-time across a variety of GPU-equipped platforms, including mobile devices.

ARM and Monoidics, which provides tools for formal verification, memory safety analysis, and security of software, will also be able to incorporate the resulting CARP technology into their own software development stacks. However, since the EC is funding this, the idea is for at least some of the tools to be made publicly available for other vendors and organizations.

Because of the mobile/embedded focus, energy efficient computing is a top priority for the compiler technology, as is runtime performance. And since this is not just an academic exercise, the resulting toolchain must also support portability, programmer productivity, and software correctness. In fact, the project has set some high goals for itself, including:

  • Order-of-magnitude improvement in productivity of accelerator software development
  • Performance of compiled code competitive with that of hand-optimized code, on multiple accelerator platforms
  • Lower energy consumption by accelerated software, leading to greener systems, improved battery life in mobile devices, and wider availability on economical platforms

Whether CARP yields an accelerator technology acceptable to the industry or just becomes another brick in the Tower of Babel remains to be seen. It bodes well that ARM is involved since it embodies a large slice of the of the mobile/embedded computing ecosystem. The EC rules probably prevented it, but it would have been even better to sign up AMD, NVIDIA, and even Intel to the project, inasmuch as any widespread industry buy-in will eventually need all three. In the meantime, it will be interesting to see what Europe’s $3.5 million investment buys.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Can Markov Logic Take Machine Learning to the Next Level?

July 11, 2018

Advances in machine learning, including deep learning, have propelled artificial intelligence (AI) into the public conscience and forced executives to create new business plans based on data. However, the scarcity of hig Read more…

By Alex Woodie

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

ORNL Summit Supercomputer Is Officially Here

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer today at an event presided over by DOE Secretary Rick Perry. Read more…

CSIR, Nvidia Partner to Launch GPU-Powered AI Center in India

July 10, 2018

As reported by a number of Indian news outlets, India’s Council of Scientific and Industrial Research (CSIR) is partnering with Nvidia to establish a new, AI-focused Centre of Excellence in New Delhi, India's capital. Read more…

By Oliver Peckham

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Tsinghua Powers Through ISC18 Field

July 10, 2018

Tsinghua University topped all other competitors at the ISC18 Student Cluster Competition with an overall score of 88.43 out of 100. This gives Tsinghua their s Read more…

By Dan Olds

HPE, EPFL Launch Blue Brain 5 Supercomputer

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displ Read more…

By John Russell

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

By Scott Tease

Meet the ISC18 Cluster Teams: Up Close & Personal

July 6, 2018

It’s time to meet your ISC18 Student Cluster Competition teams. While I was able to film them live at the ISC show, the trick was finding time to edit the vid Read more…

By Dan Olds

PRACEdays18 Keynote Allan Williams (Australia/NCI): We’re Open for Business Down Under!

July 5, 2018

The University of Ljubljana in Slovenia hosted the third annual EHPCSW18 and fifth annual PRACEdays18 events which opened with a plenary session on May 29, 2018 Read more…

By Elizabeth Leake (STEM-Trek for HPCwire)

HPC Under the Covers: Linpack, Exascale & the Top500

June 28, 2018

HPCers can get painted as a monolithic bunch by outsiders, but internecine disagreements abound over the HPCest of HPC jargon, as was evident at ISC this week. Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This