Dell Enters Hyperscale ARM Race

By Tiffany Trader

May 29, 2012

On Tuesday, Dell announced a prototype low-power server built with ARM processors, code-named “Copper,” which the company has been developing since 2010. Dell will not be selling the ARM server outright, but will provide these “seed units” to select customers and partners for application development and benchmarking.

There is a growing demand from Internet-based companies for custom-built servers that can scale performance while reducing datacenter operating expenses. The increasing popularity of cloud computing is also pushing the microprocessor market in the direction of power efficient servers for cloud providers who are relying on economies of scale to achieve and maintain profitability.

The ARM chips’s main focus is on power-efficiency and because of that they have become the processor-of-choice for battery-dependent mobile computing platforms. However, the chips that live inside today’s smart phones and tablet devices are becoming increasingly performance-optimized as well, making them attractive to server makers looking for that sweet spot between performance and power consumption.

In its official announcement, Dell noted that it is enabling ARM server development in multiple ways. While the company is delivering its ARM-based servers to select hyperscale customers and partners, it will also support the ARM development space by providing the servers to key ecosystem partners such as Canonical and Cloudera. Dell’s ARM-based servers will even be available to developers via remote access through a partnership with Texas Advanced Computing Center (TACC).

Copper ARM server sled

Dell “Copper” ARM server sled – click for full-size image.

Each ARM microserver runs at 15 watts, about a third the power draw of Intel’s Xeon E3 cloud-friendly chips. For the architecture, Dell selected Marvell’s quad-core Armada XP 78460 chip, which runs at 1.6GHz and handles up to 8GB of ECC memory. Copper’s 3U rackmount chassis contains 48 independent servers and 192 processor cores. There are four ARM server nodes per sled, and 12 sleds total (hence the 48 servers). The total power draw for a full chassis is less than 750 watts.

As it stands today, most servers, including Dell’s, are outfitted with x86 architecture chips, the vast majority from industry stalwarts (and noted adversaries), Intel and AMD. But in an effort to tip the power-profile in their favor, companies whose life-blood depends on enormous server farms, Web-scale outfits like Google and Facebook, are looking to the microserver, a low-power, and slower, platform, to fulfill their data crunching needs at a lower TCO.

Says Steve Cummings, executive director for marketing at Dell’s Data Center Solutions division:

We believe ARM-processor-based infrastructures demonstrate promise for Web front-end and Hadoop environments, where advantages in performance per dollar and performance per watt are critical. And we designed the server specifically for where the market is today, for developers and customers to create code and test performance.

A 2011 global census from DatacenterDynamics cited cost and availability of energy as top concerns of execs planning future datacenter expansions. The same report predicted that datacenter energy use would rise almost 20 percent over the following year. Cloud computing, by some accounts, is expected to offset some or even all of that increase. And no doubt, developments in hardware and fabric technologies, customized for the hyperscale computing era, will be part of the effort to keep energy costs down.

Dell joins the ranks of other server makers who are testing the microserver waters. Last November, HP announced its hyperscale intentions when it debuted Project Moonshot, seeking to redesign servers in preparation for a Web-scale era, and the HP Redstone Server platform, based on Calxeda ARM Cortex processors. The project’s goal was to fit 2,800 servers on a single rack. SeaMicro, a popular microserver startup that alternately packaged both Atom and Xeon chips into an ultra-efficient server design, was acquired by AMD earlier this year. Now AMD is in a position to offer its own low-power server building blocks, making them one to watch in the race to accommodate the ultra-scale datacenter market.

So is Intel worried? Even Intel’s Justin Rattner claimed that so-called weak processors can be “dramatically more efficient” on certain types of cloud workloads versus traditional x86 servers. Intel’s microserver candidates includes Intel Xeon E3 processors that range from 45W down to 20W, and at the Intel Developer Forum (IDF) in Beijing, the chipmaker announced a low-cost, sub-10-watt microserver platform known as Centerton. The 64-bit chip features two Atom processor cores and consumes only six watts of electricity. Intel Labs has also been working on a highly-specialized multicore chip, called the Single-Chip Cloud Computer, which debuted in December 2009. The company says the 48-core chip mimics cloud computing at the chip level and supports highly parallel, scale-out programming models. With all 48 cores running at once, the SCC is said to consume between 25W to 125W.

Of course none of these specialized chip architectures mean much without applications that can make use of them. And that pretty much sums up where the market is at right now, the testing and development phase. Prototypes like Copper give application developers a canvas for creating the next-generation of software, applications and tools that can take advantage of massively parallel computing platforms. The money saved on the hardware side from moving to stripped-down, bare-bones systems will more than pay for the software redesign, resulting in a net gain. That’s the idea behind this whole strategy: the sheer size of the deployment provides the economies of scale to make it work. Or that’s the theory anyway.

Dell says that its initial focus is on evolving the ecosystem, and that it will make its ARM servers generally available “at the appropriate time.” This is a work-in-progress, as Steve Cummings, explains in more detail:

The ARM server ecosystem is still immature, with a limited software ecosystem and (until now) no ARM-based servers from a tier one OEM. Plus, ARM is currently 32-bit technology, which means current 64-bit code would have to be modified to run on 32-bit, and likely be modified again when 64-bit comes out in the next year or two. So customers have told us they don’t plan to put ARM servers into a production environment, but instead want servers to test and validate in their labs.

The manufacturer behind the Dell ARM server chip, Marvell, believes the partnership will lead the way to bullet-proof cloud solutions. This message was underscored by Paul Valentine, vice president of marketing for the Cloud Services and Infrastructure (CSI) Business Unit of Marvell Semiconductor, Inc.:

“Today’s data centers run the distinct risk of over-extension due to the rising popularity of connected lifestyles and the resulting explosion in unstructured data. A key component of Marvell’s all-encompassing cloud-services platform, the Marvell ARMADA XP series of multi-core processors, represents a benchmark in security, scalability, performance and power conservation – ultimately offering a vast amount of headroom to cloud service providers looking to reinforce their capacities for the long haul.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This