Entry-Level HPC: Proven at a Petaflop, Affordably Priced!

By Nicole Hemsoth

May 30, 2012

Computing needs at many commercial enterprises, research universities, and government labs continue to grow as more complex problems are explored using ever-more sophisticated modeling and analysis programs.

A new class of Cray XE6 and Cray XK6 high performance computing (HPC) systems, based on AMD Opteron™ processors, now offer teraFLOPS of processing power, reliability, utilization rates, and other advantages of high-end supercomputers, but with a great  low purchase price. Entry-level supercomputing systems in this model line target midrange HPC applications, have an expected performance in the 6.5 teraflop to 200 teraFLOPS range, and scale in price from $200,000 to $3 million.

These systems can give organizations an alternative to high-end HPC clusters. One potential advantage of these entry-level systems is that they are designed to deliver supercomputing reliability and sustained performance. Users can be confident their jobs will run to completion. And the systems also offer predictability. “There is reduced OS noise, so you get similar run times every time,” said Margaret Williams, senior vice president of HPC Systems at Cray Inc.

These attributes are essential today in competitive industries and research fields where results and progress are based on high-throughput computational workflows. Typically, the output from one job, such as a modeling program or a simulation, is used by additional programs queued up to run in a particular sequence. Any disruption of the workflow can delay decisions on next steps to take. While a small delay can seem minor in the scheme of things, in competitive fields it can make a significant difference.

The new emphasis on sustained performance and computational workflow throughput is beginning to change the way some organizations evaluate solutions. In the past, raw benchmarks, such as the LINPACK or LINPACK per-watt benchmarks would be used to gauge a system’s potential. Now, the attention appears to be moving more towards overall productivity.

“What’s really important is how much real work gets done, not how fast each compute [node] runs,” said Williams. “It’s the science done per-watt that matters.” So rather than looking at how fast a single job can run the more important question is: ‘how many jobs can a system run in a given time?’

For an organization, the reliability and sustainability attributes can offer other advantages. With clusters, additional nodes are often added to a system to be used as spares when one node fails to meet workload spikes. With predictable performance systems, less extra capacity is needed.  Fewer nodes means low operating costs: for example, less electricity should be needed, there are fewer elements to manage, and less rack and floor space is required.

Furthermore, entry-level supercomputers offer organizations a complete system that includes the compute engine, high-performance memory and I/O, a file system and storage. All of the elements are tightly integrated and managed as a single system. Compared to a typical HPC cluster, this can help reduce system administration costs since each element does not have to be managed independently using different management consoles and tools.

And for organizations with higher-end Cray supercomputers, the entry-level Cray systems can be used to help develop and test new programs. This is possible because the entry-level systems use the same hardware and software as their higher end counterparts. The potential benefit here is that development and testing can be kept off of production systems, thus enabling a saving of time on those systems for real work.

Directly compatible with the high-end machines, these entry-level configurations not only help minimize total system costs, but also support Cray’s Cluster Compatibility Mode (CCM), providing users with out-of-the-box installation and running of diverse Independent Software Vendor (ISV) applications across numerous technology segments.

Cray and AMD as Your Technology Partners

Cray and AMD have a long history of collaboration. Over the years, the relationship has produced some of the world’s most productive supercomputers for scientific and commercial research. In fact, in the November 2011 release of the Top 500 supercomputers, three of the top ten and seven of the top twenty supercomputers in the world were Cray systems powered by AMD Opteron™ processors.

Throughout the relationship, AMD has made several major technological leaps in processor architecture and design. Processors have gone from dual-core to quad-core to six-core over the last several years. The recent launch of the AMD Opteron™ 6200 Series processor, which had gone by the code name “Interlagos,” offers the world’s first 16-core x86 processor. The processor’s architecture is very flexible and can be applied effectively to a variety of workloads and problems. Additionally, it supports AVX instructions and offers a performance boost provided by AMD Turbo CORE technology.

For existing Cray customers, the entry-level supercomputers powered by AMD Opteron processors provide investment protection. Over the years, Cray users have been able to upgrade as new technologies become available. This included upgrades to processors, blades, and storage, which allows an organization to leverage an initial investment in a Cray system and scale the system over time.

The entry-level HPC systems are just the latest result in this partnership between Cray and AMD.

The systems offer an affordable price, requisite performance, and the power efficiency needed in organizations that find they must apply more computing resources towards solving increasingly complex problems.

To learn more about the Cray entry-level supercomputers powered by AMD Opteron processors, visit: www.cray.com/ownacray

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This