Calxeda Takes Aim at Big Data HPC with ARM Server Chip

By Michael Feldman

May 31, 2012

With Dell’s news this week of its renewed plans to bring ARM-based servers to datacenters and Intel’s recent unveiling of new Xeon CPUs aimed at ultra-low-power servers, the “microserver” marketplace is being primed for some commercial offerings. Chip startup Calxeda has been working to bring its own ARM-based SoC technology into the datacenter and, with the help of its OEM partners, the company is positioning the technology for its commercial debut.

The microserver phenomenon is just emerging, but it has all the earmarks of a disruptive market shift. The concept was invented to more closely match hardware capabilities with evolving datacenter workloads and energy usage. A near insatiable demand for Web-based serving and content delivery and a plethora of big data applications, combined with the escalating costs of power and cooling, has forced CPU makers to rethink their priorities. Calxeda, Marvell, Intel, and others recognized these trends forming years ago and started designing ultra-low-power parts aimed at these high-growth application areas.

High performance computing is somewhat on the periphery of this phenomenon. The HPC user’s obsession with performance, especially floating point performance, is rather at odds with these FLOP-challenged chips. And for the initial crop of ARM-based servers, there is the additional limitation of 32-bit computing, which cuts across both HPC and enterprise computing.

Calxeda’s EnergyCore processor, for example, is a quad-core ARM chip of Cortex A9 vintage, the same 32-bit architecture that powers the latest dual-core iPad (sans the PowerVR GPU). And although the Calxeda chip is marginally faster than the iPad chip, its top speed is just 1.4 GHz. With less than half the clock frequency and half the number of cores of a midrange Xeon CPU, the EnergyCore has about 1/10 the overall performance of a Sandy Bridge E5-2600.

The upside, of course, is power usage. While that same 8-core Sandy Bridge part has a 100-watt TDP, the EnergyCore SoC maxes out at less than less than 4 watts. And that includes a high performance on-chip fabric switch, which eliminates the need for a lot of network cabling and energy-sucking switches. The chip also incorporates a management engine that does high-level functions like intelligent node routing and power optimization.

When you add in 4 GB of RAM, a complete Calxeda server is only 5 watts. A four-node, 16-core reference board designed by Calxeda consumes just 20 watts and is 10 inches long.

The catch is that the application has to parallelize rather well. According to the chipmaker, what would have taken 400 servers of a conventional x86 setup now requires 1,600 Calxeda-based servers, albeit with just 1/10 the power requirement, 1/20 the rack footprint, and less than half the up-front costs. That level of savings is attracting a lot of attention from users with cluster apps that can scale reasonably well but don’t require scads of single-threaded performance or raw FLOPS.

That represents a large number of Web and enterprise workloads, but there is also a rather nice subset of HPC applications that can take advantage of this platform. According to Calxeda vice president of marketing Karl Freund, a lot of data-heavy HPC applications are fair game for ARM clusters. Any MapReduce/Hadoop-type application or really any code that is I/O- or memory-bound, rather than compute-bound, is a “great fit” says Freund.

It includes a number of big data-ish apps like financial and risk modeling, seismic codes, and various type of signal processing workloads. Freund also thinks there’s a case to be made here for genomic analysis. In these applications, performance tends to be constrained by the bottleneck at external storage and/or main memory, so you don’t need a fast clock on the CPU; it’s going to be waiting for data regardless of its GHz rating.

In fact, for data-bound codes, the slower the chip the better the performance per watt. That’s the essential design point of these ARM server chips, since they are geared for throughput processing on embarrassingly parallel workloads. And in many cases, you don’t need that much floating point horsepower either.

Even for traditional HPC science simulations, where floating point performance is often critical, the Calxeda solution might be the way to go. Although Freund admits that their CPU is not designed for FP performance, the hardware does include an FPU with both single and double precision FP support, not to mention a NEON SIMD engine with even better single precision performance. But it is by no means a high-end floating point microprocessor in the fashion of a Xeon or an Opteron.

Even in HPC though, that’s not always necessary. In conversations with users at Sandia National Labs, Freund related that only about 5 percent of the aggregate cycles on the labs’ simulation codes were double precision floating point operations. That suggests the Calxeda offering might be able to effectively negotiate a simulation code, slowing down on the floating point curves and making up time on the integer straightaways.

Another consideration is the movement toward heterogenous computing in HPC, where GPUs and to a lesser extent, FPGAs, are being employed as computational accelerators. Where applications can take advantage of such acceleration, a low-power ARM, rather than a big Xeon or Opteron, may be all that’s necessary for a host-side CPU. Freund says at least one customer is toying with the idea of hooking a Calxeda-based server to an FPGA for just such an arrangement.

To date, the company has attracted five OEMs that have designed servers around the EnergyCore SoC. HP and Boston Limited have demonstrated their Calxeda gear in public. HP’s offering, the Redstone Development Platform (4U 288 nodes), is not a commercial product, per se. It’s being distributed to select customers for testing and evaluation only. The Boston Limited platform, known as Viridis (2U 48 nodes), is also in the pre-commercial stage and is likewise being distributed to “interested parties.” And although Dell’s “Copper” microserver is officially powered by Marvell’s ARM server chip, the server maker is also in cahoots with Calxeda on other designs.

The remaining two Calxeda OEMs will remain nameless for the time being. However, according to Freund, three of the five system vendors should begin shipping Calxeda-powered servers in volume by Q4 of this year.

In the meantime, Sandia and MIT have signed up as beta sites for running some HPC codes through Calxeda hardware. A set of HPC libraries and packages have already been ported to the platform, including various flavors of MPI, BLAS, ScaLAPACK, Ganglia (monitoring) and Condor (checkpointing). Language support, including C, Fortran, Perl, Python, and Ruby is there as well.

Let the benchmarking begin.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

Quantum Adds Global Smarts to StorNext File System

April 20, 2017

Companies that use Quantum’s StorNext platform to store massive amounts of data this week got a glimpse of new storage capabilities that should make it easier to access their data horde from anywhere in the world. Read more…

By Alex Woodie

HPE Extreme Performance Solutions

HPC-Driven Weather Simulations Improving Forecasting Capabilities

In September of 1938, a massive hurricane traversed the Atlantic Ocean and made landfall in New England. Due to inadequate and incorrect forecasting, the storm struck farther north and with greater intensity than had been predicted, leaving residents and authorities with virtually no warning or time to properly prepare. Read more…

Scaling an HPC Career in Nepal Can Be a Steep Climb

April 20, 2017

Umesh Upadhyaya works as an IT Associate at the International Centre for Integrated Mountain Development (ICIMOD) in Nepal, which supports the country’s one and only HPC facility. He is directly involved in an initiative that focuses on climate change and atmosphere modeling Read more…

By Nages Sieslack

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Intel Open Sources All Lustre Work, Brent Gorda Exits

April 19, 2017

In a letter to the Lustre community posted on the Intel website, Vice President of Intel's Data Center Group Trish Damkroger writes that effective immediately the company will be contributing all Lustre development to the open source community. Damkroger also announced that Brent Gorda, General Manager, High Performance Data Division at Intel is leaving the company. Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Penguin Takes a Run at the Big Cloud Providers

April 12, 2017

HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC and the Colocation Datacenter – a Bridge Too Far?

April 7, 2017

A more standardised HPC platform approach is making the running of HPC projects within increasing financial reach. Read more…

By Clive Longbottom, Quocirca

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This