Calxeda Takes Aim at Big Data HPC with ARM Server Chip

By Michael Feldman

May 31, 2012

With Dell’s news this week of its renewed plans to bring ARM-based servers to datacenters and Intel’s recent unveiling of new Xeon CPUs aimed at ultra-low-power servers, the “microserver” marketplace is being primed for some commercial offerings. Chip startup Calxeda has been working to bring its own ARM-based SoC technology into the datacenter and, with the help of its OEM partners, the company is positioning the technology for its commercial debut.

The microserver phenomenon is just emerging, but it has all the earmarks of a disruptive market shift. The concept was invented to more closely match hardware capabilities with evolving datacenter workloads and energy usage. A near insatiable demand for Web-based serving and content delivery and a plethora of big data applications, combined with the escalating costs of power and cooling, has forced CPU makers to rethink their priorities. Calxeda, Marvell, Intel, and others recognized these trends forming years ago and started designing ultra-low-power parts aimed at these high-growth application areas.

High performance computing is somewhat on the periphery of this phenomenon. The HPC user’s obsession with performance, especially floating point performance, is rather at odds with these FLOP-challenged chips. And for the initial crop of ARM-based servers, there is the additional limitation of 32-bit computing, which cuts across both HPC and enterprise computing.

Calxeda’s EnergyCore processor, for example, is a quad-core ARM chip of Cortex A9 vintage, the same 32-bit architecture that powers the latest dual-core iPad (sans the PowerVR GPU). And although the Calxeda chip is marginally faster than the iPad chip, its top speed is just 1.4 GHz. With less than half the clock frequency and half the number of cores of a midrange Xeon CPU, the EnergyCore has about 1/10 the overall performance of a Sandy Bridge E5-2600.

The upside, of course, is power usage. While that same 8-core Sandy Bridge part has a 100-watt TDP, the EnergyCore SoC maxes out at less than less than 4 watts. And that includes a high performance on-chip fabric switch, which eliminates the need for a lot of network cabling and energy-sucking switches. The chip also incorporates a management engine that does high-level functions like intelligent node routing and power optimization.

When you add in 4 GB of RAM, a complete Calxeda server is only 5 watts. A four-node, 16-core reference board designed by Calxeda consumes just 20 watts and is 10 inches long.

The catch is that the application has to parallelize rather well. According to the chipmaker, what would have taken 400 servers of a conventional x86 setup now requires 1,600 Calxeda-based servers, albeit with just 1/10 the power requirement, 1/20 the rack footprint, and less than half the up-front costs. That level of savings is attracting a lot of attention from users with cluster apps that can scale reasonably well but don’t require scads of single-threaded performance or raw FLOPS.

That represents a large number of Web and enterprise workloads, but there is also a rather nice subset of HPC applications that can take advantage of this platform. According to Calxeda vice president of marketing Karl Freund, a lot of data-heavy HPC applications are fair game for ARM clusters. Any MapReduce/Hadoop-type application or really any code that is I/O- or memory-bound, rather than compute-bound, is a “great fit” says Freund.

It includes a number of big data-ish apps like financial and risk modeling, seismic codes, and various type of signal processing workloads. Freund also thinks there’s a case to be made here for genomic analysis. In these applications, performance tends to be constrained by the bottleneck at external storage and/or main memory, so you don’t need a fast clock on the CPU; it’s going to be waiting for data regardless of its GHz rating.

In fact, for data-bound codes, the slower the chip the better the performance per watt. That’s the essential design point of these ARM server chips, since they are geared for throughput processing on embarrassingly parallel workloads. And in many cases, you don’t need that much floating point horsepower either.

Even for traditional HPC science simulations, where floating point performance is often critical, the Calxeda solution might be the way to go. Although Freund admits that their CPU is not designed for FP performance, the hardware does include an FPU with both single and double precision FP support, not to mention a NEON SIMD engine with even better single precision performance. But it is by no means a high-end floating point microprocessor in the fashion of a Xeon or an Opteron.

Even in HPC though, that’s not always necessary. In conversations with users at Sandia National Labs, Freund related that only about 5 percent of the aggregate cycles on the labs’ simulation codes were double precision floating point operations. That suggests the Calxeda offering might be able to effectively negotiate a simulation code, slowing down on the floating point curves and making up time on the integer straightaways.

Another consideration is the movement toward heterogenous computing in HPC, where GPUs and to a lesser extent, FPGAs, are being employed as computational accelerators. Where applications can take advantage of such acceleration, a low-power ARM, rather than a big Xeon or Opteron, may be all that’s necessary for a host-side CPU. Freund says at least one customer is toying with the idea of hooking a Calxeda-based server to an FPGA for just such an arrangement.

To date, the company has attracted five OEMs that have designed servers around the EnergyCore SoC. HP and Boston Limited have demonstrated their Calxeda gear in public. HP’s offering, the Redstone Development Platform (4U 288 nodes), is not a commercial product, per se. It’s being distributed to select customers for testing and evaluation only. The Boston Limited platform, known as Viridis (2U 48 nodes), is also in the pre-commercial stage and is likewise being distributed to “interested parties.” And although Dell’s “Copper” microserver is officially powered by Marvell’s ARM server chip, the server maker is also in cahoots with Calxeda on other designs.

The remaining two Calxeda OEMs will remain nameless for the time being. However, according to Freund, three of the five system vendors should begin shipping Calxeda-powered servers in volume by Q4 of this year.

In the meantime, Sandia and MIT have signed up as beta sites for running some HPC codes through Calxeda hardware. A set of HPC libraries and packages have already been ported to the platform, including various flavors of MPI, BLAS, ScaLAPACK, Ganglia (monitoring) and Condor (checkpointing). Language support, including C, Fortran, Perl, Python, and Ruby is there as well.

Let the benchmarking begin.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This