Calxeda Takes Aim at Big Data HPC with ARM Server Chip

By Michael Feldman

May 31, 2012

With Dell’s news this week of its renewed plans to bring ARM-based servers to datacenters and Intel’s recent unveiling of new Xeon CPUs aimed at ultra-low-power servers, the “microserver” marketplace is being primed for some commercial offerings. Chip startup Calxeda has been working to bring its own ARM-based SoC technology into the datacenter and, with the help of its OEM partners, the company is positioning the technology for its commercial debut.

The microserver phenomenon is just emerging, but it has all the earmarks of a disruptive market shift. The concept was invented to more closely match hardware capabilities with evolving datacenter workloads and energy usage. A near insatiable demand for Web-based serving and content delivery and a plethora of big data applications, combined with the escalating costs of power and cooling, has forced CPU makers to rethink their priorities. Calxeda, Marvell, Intel, and others recognized these trends forming years ago and started designing ultra-low-power parts aimed at these high-growth application areas.

High performance computing is somewhat on the periphery of this phenomenon. The HPC user’s obsession with performance, especially floating point performance, is rather at odds with these FLOP-challenged chips. And for the initial crop of ARM-based servers, there is the additional limitation of 32-bit computing, which cuts across both HPC and enterprise computing.

Calxeda’s EnergyCore processor, for example, is a quad-core ARM chip of Cortex A9 vintage, the same 32-bit architecture that powers the latest dual-core iPad (sans the PowerVR GPU). And although the Calxeda chip is marginally faster than the iPad chip, its top speed is just 1.4 GHz. With less than half the clock frequency and half the number of cores of a midrange Xeon CPU, the EnergyCore has about 1/10 the overall performance of a Sandy Bridge E5-2600.

The upside, of course, is power usage. While that same 8-core Sandy Bridge part has a 100-watt TDP, the EnergyCore SoC maxes out at less than less than 4 watts. And that includes a high performance on-chip fabric switch, which eliminates the need for a lot of network cabling and energy-sucking switches. The chip also incorporates a management engine that does high-level functions like intelligent node routing and power optimization.

When you add in 4 GB of RAM, a complete Calxeda server is only 5 watts. A four-node, 16-core reference board designed by Calxeda consumes just 20 watts and is 10 inches long.

The catch is that the application has to parallelize rather well. According to the chipmaker, what would have taken 400 servers of a conventional x86 setup now requires 1,600 Calxeda-based servers, albeit with just 1/10 the power requirement, 1/20 the rack footprint, and less than half the up-front costs. That level of savings is attracting a lot of attention from users with cluster apps that can scale reasonably well but don’t require scads of single-threaded performance or raw FLOPS.

That represents a large number of Web and enterprise workloads, but there is also a rather nice subset of HPC applications that can take advantage of this platform. According to Calxeda vice president of marketing Karl Freund, a lot of data-heavy HPC applications are fair game for ARM clusters. Any MapReduce/Hadoop-type application or really any code that is I/O- or memory-bound, rather than compute-bound, is a “great fit” says Freund.

It includes a number of big data-ish apps like financial and risk modeling, seismic codes, and various type of signal processing workloads. Freund also thinks there’s a case to be made here for genomic analysis. In these applications, performance tends to be constrained by the bottleneck at external storage and/or main memory, so you don’t need a fast clock on the CPU; it’s going to be waiting for data regardless of its GHz rating.

In fact, for data-bound codes, the slower the chip the better the performance per watt. That’s the essential design point of these ARM server chips, since they are geared for throughput processing on embarrassingly parallel workloads. And in many cases, you don’t need that much floating point horsepower either.

Even for traditional HPC science simulations, where floating point performance is often critical, the Calxeda solution might be the way to go. Although Freund admits that their CPU is not designed for FP performance, the hardware does include an FPU with both single and double precision FP support, not to mention a NEON SIMD engine with even better single precision performance. But it is by no means a high-end floating point microprocessor in the fashion of a Xeon or an Opteron.

Even in HPC though, that’s not always necessary. In conversations with users at Sandia National Labs, Freund related that only about 5 percent of the aggregate cycles on the labs’ simulation codes were double precision floating point operations. That suggests the Calxeda offering might be able to effectively negotiate a simulation code, slowing down on the floating point curves and making up time on the integer straightaways.

Another consideration is the movement toward heterogenous computing in HPC, where GPUs and to a lesser extent, FPGAs, are being employed as computational accelerators. Where applications can take advantage of such acceleration, a low-power ARM, rather than a big Xeon or Opteron, may be all that’s necessary for a host-side CPU. Freund says at least one customer is toying with the idea of hooking a Calxeda-based server to an FPGA for just such an arrangement.

To date, the company has attracted five OEMs that have designed servers around the EnergyCore SoC. HP and Boston Limited have demonstrated their Calxeda gear in public. HP’s offering, the Redstone Development Platform (4U 288 nodes), is not a commercial product, per se. It’s being distributed to select customers for testing and evaluation only. The Boston Limited platform, known as Viridis (2U 48 nodes), is also in the pre-commercial stage and is likewise being distributed to “interested parties.” And although Dell’s “Copper” microserver is officially powered by Marvell’s ARM server chip, the server maker is also in cahoots with Calxeda on other designs.

The remaining two Calxeda OEMs will remain nameless for the time being. However, according to Freund, three of the five system vendors should begin shipping Calxeda-powered servers in volume by Q4 of this year.

In the meantime, Sandia and MIT have signed up as beta sites for running some HPC codes through Calxeda hardware. A set of HPC libraries and packages have already been ported to the platform, including various flavors of MPI, BLAS, ScaLAPACK, Ganglia (monitoring) and Condor (checkpointing). Language support, including C, Fortran, Perl, Python, and Ruby is there as well.

Let the benchmarking begin.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This