Calxeda Takes Aim at Big Data HPC with ARM Server Chip

By Michael Feldman

May 31, 2012

With Dell’s news this week of its renewed plans to bring ARM-based servers to datacenters and Intel’s recent unveiling of new Xeon CPUs aimed at ultra-low-power servers, the “microserver” marketplace is being primed for some commercial offerings. Chip startup Calxeda has been working to bring its own ARM-based SoC technology into the datacenter and, with the help of its OEM partners, the company is positioning the technology for its commercial debut.

The microserver phenomenon is just emerging, but it has all the earmarks of a disruptive market shift. The concept was invented to more closely match hardware capabilities with evolving datacenter workloads and energy usage. A near insatiable demand for Web-based serving and content delivery and a plethora of big data applications, combined with the escalating costs of power and cooling, has forced CPU makers to rethink their priorities. Calxeda, Marvell, Intel, and others recognized these trends forming years ago and started designing ultra-low-power parts aimed at these high-growth application areas.

High performance computing is somewhat on the periphery of this phenomenon. The HPC user’s obsession with performance, especially floating point performance, is rather at odds with these FLOP-challenged chips. And for the initial crop of ARM-based servers, there is the additional limitation of 32-bit computing, which cuts across both HPC and enterprise computing.

Calxeda’s EnergyCore processor, for example, is a quad-core ARM chip of Cortex A9 vintage, the same 32-bit architecture that powers the latest dual-core iPad (sans the PowerVR GPU). And although the Calxeda chip is marginally faster than the iPad chip, its top speed is just 1.4 GHz. With less than half the clock frequency and half the number of cores of a midrange Xeon CPU, the EnergyCore has about 1/10 the overall performance of a Sandy Bridge E5-2600.

The upside, of course, is power usage. While that same 8-core Sandy Bridge part has a 100-watt TDP, the EnergyCore SoC maxes out at less than less than 4 watts. And that includes a high performance on-chip fabric switch, which eliminates the need for a lot of network cabling and energy-sucking switches. The chip also incorporates a management engine that does high-level functions like intelligent node routing and power optimization.

When you add in 4 GB of RAM, a complete Calxeda server is only 5 watts. A four-node, 16-core reference board designed by Calxeda consumes just 20 watts and is 10 inches long.

The catch is that the application has to parallelize rather well. According to the chipmaker, what would have taken 400 servers of a conventional x86 setup now requires 1,600 Calxeda-based servers, albeit with just 1/10 the power requirement, 1/20 the rack footprint, and less than half the up-front costs. That level of savings is attracting a lot of attention from users with cluster apps that can scale reasonably well but don’t require scads of single-threaded performance or raw FLOPS.

That represents a large number of Web and enterprise workloads, but there is also a rather nice subset of HPC applications that can take advantage of this platform. According to Calxeda vice president of marketing Karl Freund, a lot of data-heavy HPC applications are fair game for ARM clusters. Any MapReduce/Hadoop-type application or really any code that is I/O- or memory-bound, rather than compute-bound, is a “great fit” says Freund.

It includes a number of big data-ish apps like financial and risk modeling, seismic codes, and various type of signal processing workloads. Freund also thinks there’s a case to be made here for genomic analysis. In these applications, performance tends to be constrained by the bottleneck at external storage and/or main memory, so you don’t need a fast clock on the CPU; it’s going to be waiting for data regardless of its GHz rating.

In fact, for data-bound codes, the slower the chip the better the performance per watt. That’s the essential design point of these ARM server chips, since they are geared for throughput processing on embarrassingly parallel workloads. And in many cases, you don’t need that much floating point horsepower either.

Even for traditional HPC science simulations, where floating point performance is often critical, the Calxeda solution might be the way to go. Although Freund admits that their CPU is not designed for FP performance, the hardware does include an FPU with both single and double precision FP support, not to mention a NEON SIMD engine with even better single precision performance. But it is by no means a high-end floating point microprocessor in the fashion of a Xeon or an Opteron.

Even in HPC though, that’s not always necessary. In conversations with users at Sandia National Labs, Freund related that only about 5 percent of the aggregate cycles on the labs’ simulation codes were double precision floating point operations. That suggests the Calxeda offering might be able to effectively negotiate a simulation code, slowing down on the floating point curves and making up time on the integer straightaways.

Another consideration is the movement toward heterogenous computing in HPC, where GPUs and to a lesser extent, FPGAs, are being employed as computational accelerators. Where applications can take advantage of such acceleration, a low-power ARM, rather than a big Xeon or Opteron, may be all that’s necessary for a host-side CPU. Freund says at least one customer is toying with the idea of hooking a Calxeda-based server to an FPGA for just such an arrangement.

To date, the company has attracted five OEMs that have designed servers around the EnergyCore SoC. HP and Boston Limited have demonstrated their Calxeda gear in public. HP’s offering, the Redstone Development Platform (4U 288 nodes), is not a commercial product, per se. It’s being distributed to select customers for testing and evaluation only. The Boston Limited platform, known as Viridis (2U 48 nodes), is also in the pre-commercial stage and is likewise being distributed to “interested parties.” And although Dell’s “Copper” microserver is officially powered by Marvell’s ARM server chip, the server maker is also in cahoots with Calxeda on other designs.

The remaining two Calxeda OEMs will remain nameless for the time being. However, according to Freund, three of the five system vendors should begin shipping Calxeda-powered servers in volume by Q4 of this year.

In the meantime, Sandia and MIT have signed up as beta sites for running some HPC codes through Calxeda hardware. A set of HPC libraries and packages have already been ported to the platform, including various flavors of MPI, BLAS, ScaLAPACK, Ganglia (monitoring) and Condor (checkpointing). Language support, including C, Fortran, Perl, Python, and Ruby is there as well.

Let the benchmarking begin.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This