How to Scale the Storage and Analysis of Business Data Using a Distributed In-Memory Data Grid

By Nicole Hemsoth

June 4, 2012

by Dr. William Bain, Ph.D, ScaleOut Software, Inc.

A hallmark of the Information Age is the incredible amount of business data that companies have to store and analyze, so-called “big data.” The ability to efficiently search data for important patterns can provide an essential competitive edge.

For example, an e-commerce Web site needs to be able to monitor online shopping carts to see which products are selling quickly. A financial services company needs to hone its equity trading strategy as it optimizes its response to fast-changing market conditions. Businesses that face challenges like these have turned to distributed, in-memory data grids (also called distributed caches) to scale their ability to manage fast-changing data and comb through data to identify patterns and trends requiring a timely response.

Distributed, in-memory data grids (IMDGs) offer two key advantages. First, they store data in memory instead of on disk for fast access, and second, they run seamlessly across a farm of servers to scale performance. But perhaps best of all, they provide a fast, easy to use platform for running near real-time “what if” analyses on the data they store. By breaking the sequential bottleneck, they can take performance to a level that stand-alone database servers and NoSQL stores cannot match.

Software architects and developers often say the following. “OK, I see the advantages, but how do I incorporate a distributed, in-memory data grid into my data storage architecture, and how could it help me to analyze my data?”

Here are three simple steps for building a fast, scalable data storage and analysis solution using a distributed, in-memory data grid.

1. Store fast-changing business data directly in a distributed, in-memory data grid instead of a database server.

Distributed, in-memory data grids, like ScaleOut StateServer, are designed to plug directly into the business logic of today’s enterprise applications and services. By storing data as collections of objects instead of relational database tables, they match the in-memory view of data already used by busi­ness logic. This makes distributed data grids exceptionally easy to integrate into existing applications using simple APIs, which are available for most modern languages, like C#, Java, and C++.

Because distributed IMDGs run on server farms, their storage capacity and throughput scale just by adding more grid servers. When hosted on a large server farm or in the cloud, a distributed, in-memory data grid’s ability to store and quickly access large volumes of data can grow well beyond that for a stand-alone database server.

2. Integrate the distributed, in-memory data grid with database servers as part of an overall storage strategy.

Of course, distributed, in-memory data grids are used to complement and not replace data­base servers, which are the authoritative repositories for transactional data and long-term storage. For example, in an ecommerce Web site, a distributed, in-memory data grid would hold shopping carts to efficiently handle a large workload of online shopping traffic, while a backend database server stores completed transactions, inventory, and customer records. The key to integrating a distributed, in-memory data grid into an enterprise application’s overall storage strategy is to carefully separate application code used for business logic from other code used for data access.

Distributed IMDGs naturally fit into business logic, which usually manages data as objects. This code is also where rapid access to data is needed, and that’s where distributed data grids provide the greatest benefit. In contrast, the data access layer typically focuses on converting objects into a relational form (or vice versa) for storage in database servers.

Interestingly, a distributed, in-memory data grid optionally can be integrated with a database server so that it can automatically access data from the database server if it’s missing from the distributed data grid. This is very useful for certain types of data, such as product or cus­tomer information, which is kept in the database server and just retrieved when needed by the application. However, most types of fast-changing, business logic data can be kept solely in a distributed, in-memory data grid and never written out to a database server.

Application server farm 

3. Analyze grid-based data using simple analysis codes and the “map/reduce” programming pattern.

Once a collection of objects, such as a Web site’s shopping carts or a financial company’s pool of stock histories, has been hosted in a distributed, in-memory data grid, it’s important to be able to scan all of this data for important patterns and trends. Over the last 25 years, re­searchers have developed a powerful, two-step method, now popularly called “map/reduce,” for analyzing large volumes of data in parallel. In the first step, each object in the collection is analyzed for an important pattern of interest by writing and running a simple algorithm that just looks at one object at a time. This algorithm is run in parallel on all objects to quickly analyze all of the data. Next, the results that were generated by running this algorithm are combined to determine an overall result, which hopefully identifies an important trend.

ScaleOut SateServer In-Memory Data Grid
For example, an e-commerce developer could write a simple code which analyzes each shopping cart to rate which product categories are generating the most interest. This code could be run on all shopping carts several times during the day (or perhaps after a marketing blitz on the Web site has been launched) to identify important shopping trends.

Distributed, in-memory data grids offer an ideal platform for analyzing data using this “map/ reduce” programming pattern. Because they store data as memory-based objects, the analy­sis code is very easy to write and debug as a simple “in-memory” code. Programmers do not need to learn parallel programming techniques or understand how the grid works. Also, distributed, in-memory data grids provide the infrastructure needed to automatically run this analysis code on all grid servers in parallel and then combine the results. The net result is that by using a distributed, in-memory data grid, application developers can easily and quickly harness the full scalability of the grid to rapidly discover data patterns and trends that are vital to a company’s success.

ScaleOut StateServer Grid Computing Edition from ScaleOut Software provides an example of built-in map/reduce (called Parallel Method Invocation). This product is an IMDG-based analytics platform that combines the popular map/reduce programming model with property-based object queries, dramatically simplifying the selection and analysis of data stored in its data grid. Fast, automatic, parallel scheduling ensures that memory-based data is analyzed at nearly real-time speeds with minimum data motion. Completely eliminated are batch scheduling and file-I/O overheads, enabling analysis of fast-changing data like network telemetry, market data, or click stream data for fast decision making. In-memory map/reduce dramatically shortens run-times compared to other approaches which analyze disk-based data, such as Hadoop. Built-in high availability ensures that analyses run to completion, even if a server or network connection fails.

As companies become ever more pressed to manage increasing data volumes and quickly respond to changing market conditions, they are turning to distributed, in-memory data grids to obtain the “scalability” boost they need. As clouds become an integral part of en­terprise infrastructures, distributed, in-memory data grids should further prove their value in harnessing the power of scalable computing to provide an essential competitive edge.

Dr. William L. Bain is founder and CEO of ScaleOut Software, Inc. Bill has a Ph.D. in electrical engineering/parallel computing from Rice University, and he has worked at Bell Labs research, Intel, and Microsoft. Bill founded and ran three start-up companies prior to joining Microsoft. In the most recent company (Valence Research), he developed a distributed Web load-balancing software solution that was acquired by Microsoft and is now called Network Load Balanc­ing within the Windows Server operating system. Dr. Bain holds several patents in computer architecture and distributed computing. As a member of the Seattle-based Alliance of Angels, Dr. Bain is actively involved in entrepreneurship and the angel community.

To learn more about ScaleOut Software’s in-memory data grids, please visit www.scaleoutsoftware.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

CMU’s Latest “Card Shark” – Libratus – is Beating the Poker Pros (Again)

January 20, 2017

It’s starting to look like Carnegie Mellon University has a gambling problem – can’t stay away from the poker table. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This