How to Scale the Storage and Analysis of Business Data Using a Distributed In-Memory Data Grid

By Nicole Hemsoth

June 4, 2012

by Dr. William Bain, Ph.D, ScaleOut Software, Inc.

A hallmark of the Information Age is the incredible amount of business data that companies have to store and analyze, so-called “big data.” The ability to efficiently search data for important patterns can provide an essential competitive edge.

For example, an e-commerce Web site needs to be able to monitor online shopping carts to see which products are selling quickly. A financial services company needs to hone its equity trading strategy as it optimizes its response to fast-changing market conditions. Businesses that face challenges like these have turned to distributed, in-memory data grids (also called distributed caches) to scale their ability to manage fast-changing data and comb through data to identify patterns and trends requiring a timely response.

Distributed, in-memory data grids (IMDGs) offer two key advantages. First, they store data in memory instead of on disk for fast access, and second, they run seamlessly across a farm of servers to scale performance. But perhaps best of all, they provide a fast, easy to use platform for running near real-time “what if” analyses on the data they store. By breaking the sequential bottleneck, they can take performance to a level that stand-alone database servers and NoSQL stores cannot match.

Software architects and developers often say the following. “OK, I see the advantages, but how do I incorporate a distributed, in-memory data grid into my data storage architecture, and how could it help me to analyze my data?”

Here are three simple steps for building a fast, scalable data storage and analysis solution using a distributed, in-memory data grid.

1. Store fast-changing business data directly in a distributed, in-memory data grid instead of a database server.

Distributed, in-memory data grids, like ScaleOut StateServer, are designed to plug directly into the business logic of today’s enterprise applications and services. By storing data as collections of objects instead of relational database tables, they match the in-memory view of data already used by busi­ness logic. This makes distributed data grids exceptionally easy to integrate into existing applications using simple APIs, which are available for most modern languages, like C#, Java, and C++.

Because distributed IMDGs run on server farms, their storage capacity and throughput scale just by adding more grid servers. When hosted on a large server farm or in the cloud, a distributed, in-memory data grid’s ability to store and quickly access large volumes of data can grow well beyond that for a stand-alone database server.

2. Integrate the distributed, in-memory data grid with database servers as part of an overall storage strategy.

Of course, distributed, in-memory data grids are used to complement and not replace data­base servers, which are the authoritative repositories for transactional data and long-term storage. For example, in an ecommerce Web site, a distributed, in-memory data grid would hold shopping carts to efficiently handle a large workload of online shopping traffic, while a backend database server stores completed transactions, inventory, and customer records. The key to integrating a distributed, in-memory data grid into an enterprise application’s overall storage strategy is to carefully separate application code used for business logic from other code used for data access.

Distributed IMDGs naturally fit into business logic, which usually manages data as objects. This code is also where rapid access to data is needed, and that’s where distributed data grids provide the greatest benefit. In contrast, the data access layer typically focuses on converting objects into a relational form (or vice versa) for storage in database servers.

Interestingly, a distributed, in-memory data grid optionally can be integrated with a database server so that it can automatically access data from the database server if it’s missing from the distributed data grid. This is very useful for certain types of data, such as product or cus­tomer information, which is kept in the database server and just retrieved when needed by the application. However, most types of fast-changing, business logic data can be kept solely in a distributed, in-memory data grid and never written out to a database server.

Application server farm 

3. Analyze grid-based data using simple analysis codes and the “map/reduce” programming pattern.

Once a collection of objects, such as a Web site’s shopping carts or a financial company’s pool of stock histories, has been hosted in a distributed, in-memory data grid, it’s important to be able to scan all of this data for important patterns and trends. Over the last 25 years, re­searchers have developed a powerful, two-step method, now popularly called “map/reduce,” for analyzing large volumes of data in parallel. In the first step, each object in the collection is analyzed for an important pattern of interest by writing and running a simple algorithm that just looks at one object at a time. This algorithm is run in parallel on all objects to quickly analyze all of the data. Next, the results that were generated by running this algorithm are combined to determine an overall result, which hopefully identifies an important trend.

ScaleOut SateServer In-Memory Data Grid
For example, an e-commerce developer could write a simple code which analyzes each shopping cart to rate which product categories are generating the most interest. This code could be run on all shopping carts several times during the day (or perhaps after a marketing blitz on the Web site has been launched) to identify important shopping trends.

Distributed, in-memory data grids offer an ideal platform for analyzing data using this “map/ reduce” programming pattern. Because they store data as memory-based objects, the analy­sis code is very easy to write and debug as a simple “in-memory” code. Programmers do not need to learn parallel programming techniques or understand how the grid works. Also, distributed, in-memory data grids provide the infrastructure needed to automatically run this analysis code on all grid servers in parallel and then combine the results. The net result is that by using a distributed, in-memory data grid, application developers can easily and quickly harness the full scalability of the grid to rapidly discover data patterns and trends that are vital to a company’s success.

ScaleOut StateServer Grid Computing Edition from ScaleOut Software provides an example of built-in map/reduce (called Parallel Method Invocation). This product is an IMDG-based analytics platform that combines the popular map/reduce programming model with property-based object queries, dramatically simplifying the selection and analysis of data stored in its data grid. Fast, automatic, parallel scheduling ensures that memory-based data is analyzed at nearly real-time speeds with minimum data motion. Completely eliminated are batch scheduling and file-I/O overheads, enabling analysis of fast-changing data like network telemetry, market data, or click stream data for fast decision making. In-memory map/reduce dramatically shortens run-times compared to other approaches which analyze disk-based data, such as Hadoop. Built-in high availability ensures that analyses run to completion, even if a server or network connection fails.

As companies become ever more pressed to manage increasing data volumes and quickly respond to changing market conditions, they are turning to distributed, in-memory data grids to obtain the “scalability” boost they need. As clouds become an integral part of en­terprise infrastructures, distributed, in-memory data grids should further prove their value in harnessing the power of scalable computing to provide an essential competitive edge.

Dr. William L. Bain is founder and CEO of ScaleOut Software, Inc. Bill has a Ph.D. in electrical engineering/parallel computing from Rice University, and he has worked at Bell Labs research, Intel, and Microsoft. Bill founded and ran three start-up companies prior to joining Microsoft. In the most recent company (Valence Research), he developed a distributed Web load-balancing software solution that was acquired by Microsoft and is now called Network Load Balanc­ing within the Windows Server operating system. Dr. Bain holds several patents in computer architecture and distributed computing. As a member of the Seattle-based Alliance of Angels, Dr. Bain is actively involved in entrepreneurship and the angel community.

To learn more about ScaleOut Software’s in-memory data grids, please visit www.scaleoutsoftware.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combined peak computing capacity, the new systems will extend the a Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

ASC18: Tough Applications & Tough Luck

May 17, 2018

The applications at the ASC18 Student Cluster Competition were tough. Tougher than the $3.99 steak special at your local greasy spoon restaurant. The apps are so tough that even Chuck Norris backs away from them slowly. Read more…

By Dan Olds

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and the technology challenges ahead. These discussions happened in Read more…

By Alex R. Larzelere

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

Emerging Advanced Scale Tech Trends Focus of Annual Tabor Conference

May 9, 2018

At Tabor Communications' annual Advanced Scale Forum (ASF) held this week in Austin, the focus was on enterprise adoption of HPC-class technologies and high performance data analytics (HPDA). It’s a confab that brings together end users (CIOs, IT planners, department heads) and vendors and encourages... Read more…

By the Editorial Team

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

  • arrow
  • Click Here for More Headlines
  • arrow
Share This