Mirantis, iSuperGrid Partner on HPC Cloud Network

By Boris Renski

June 4, 2012

OpenStack Case Study: iSuperGrid and Mirantis

The Challenge

Cloud Computing and high performance computing (HPC) workloads might seem a natural fit. They do share key attributes:

  • Require a versatile infrastructure, where compute cycles can be brought to bear in flexible fashion on very diverse workloads.
  • Rely on fluid management of resource configurations.
  • Are well-suited to distributed computing problems, where processing can be spread over many units of physical hardware.

China's longest bridgeBut in practice, HPC workloads impose unique demands on the cloud: provisioning, configuration of compute resources and storage resources, and lifecycle management have needs of their own. In fact, running HPC workloads on conventional cloud infrastructure can lead to performance slowdowns, higher costs, and obstacles to the rapid iteration of workload cycles that HPC requires.

Information SuperGrid Technology (ISGT or iSuperGrid) is a cloud service provider whose system and application software make it possible to integrate distributed and parallel grid supercomputers into a massive and seamless global cloud computing platform. In this platform, each computer node leverages and harnesses the power of the other nodes to scale up processing capacity and capability when needed.

iSuperGrid has built an innovative new model to deliver this cloud platform to organizations with HPC needs. To marry the flexibility of cloud computing with the complexities of HPC, they turned to the OpenStack cloud infrastructure technology.

‘Supergrid’ Cloud

Working with Mirantis, a company that provides engineering services for OpenStack technology projects, iSuperGrid is building out a distributed OpenStack cloud network, numbering into the thousands of nodes, providing HPC and versatile hosting to a variety of emerging markets.

As part of its business model, iSuperGrid offers a fixed-size, pre-certified cloud server rack set, deployed as an on-demand resource for HPC workloads to a broad range of government, academic and commercial organizations. Each organization’s OpenStack cloud rack is, in turn, networked into a larger, collective ‘supergrid’. This way, any iSuperGrid customer can then offer spare HPC-capable compute cycles during off-peak hours, such as nights and weekends, to run HPC workloads to third parties. Configurations are changed on the fly to fit different types of HPC workloads, such as those that require large memory resources but little persistent storage, or vice-versa. These cycles can be sold directly, or brokered via iSuperGrid to anyone needing fixed-term cloud services.

OpenStack Use Case

HPC Workloads
Because it specializes in HPC, iSuperGrid delivers cloud services to health, education, industrial, logistics, mineral extraction, media/entertainment, and other markets in China and worldwide. What these diverse compute workloads have in common is their appetite for specialized, calculation-intensive compute operations.

Examples include:

‘Smart utilities’: municipal services such as electricity distribution, energy consumption, real-time on-road traffic analysis Science and engineering: Mineral and geology analysis, weather forecasting, biomedical research, chip and instrument designs

Media: Digital content rendering, delivery, and distribution

Logistics: batch and real-time calculations of equipment deployment and utilization, routing optimization, and throughput

The OpenStack Strategy
The iSuperGrid business strategy calls for delivering these services with dynamic provisioning that scales in a pay-as-you-go offering. Making it cost effective relies on high-efficiency utilization and rapid turnaround of allocation, so that compute supply and demand move in tight synchronization. OpenStack’s flexibility and scalability makes it a good choice. In order to base this solution on the OpenStack technology, iSuperGrid asked Mirantis to provide architectural and implementation guidance.

Technical Requirements

Performance Appetite
Because HPC workloads are by definition compute intensive, Mirantis first turned to benchmarking compute performance. In conventional cloud environments, virtualization throttles back the underlying hardware compute horsepower available to applications, by allocating machine cycles across multiple virtual machines. An HPC performance test showed the scope of the challenge. Comparison of a deep analytics workload on Amazon Web Services (AWS) vs. a dedicated HPC cluster on commodity hardware found the AWS cloud ran the workload 30x slower than the dedicated ‘non-cloud’ servers. Given that cloud environments such as AWS are optimized for deploying Web and transaction applications, it should come as no surprise that they perform sub-optimally. The question was then, could OpenStack do better?

OpenStack and Cloud Provisioning
Direct access to specialized low-level machine resources is essential to making it work in the cloud. But it’s more than raw resource access: rapid, cost-effective provisioning of incremental compute cycles with minimum overhead must feed bursts in processing appetite demanding quick access to raw compute power. Workloads such as smart-cities electric grid consumption tracking, real-time-analytics, simulations, logistics tracking, mineral extraction analysis, and similar performance-intensive applications cannot be satisfied by squeezing more work out of a pre-configured, fixed server footprint.

The OpenStack Solution

Cloud Configuration
The first iSuperGrid cloud, engineered and deployed on OpenStack in collaboration with Mirantis, featured approximately 50 server systems configured in three geographically dispersed datacenters across China. It offers both database and object storage, plus Storage-as-a-Service to support elastic compute node storage. These key cloud services are also configured for high availability.

OpenStack HPC Architecture
Working over a period of eight weeks with a team of six globally distributed engineers, Mirantis designed an architecture that would use OpenStack Essex components to blend the compute properties of a dedicated HPC cluster with the flexibility of a cloud deployment.

Bare Metal Provisioning
A key element of this architecture was bare-metal provisioning ‒ deploying well-defined, fully-functional OpenStack images on unconfigured hardware. Working from a boot server to connect to unprovisioned servers, the OpenStack cloud controller constructs a kernel that bootstraps a fully functional OpenStack OS image and connects it to the cloud fabric. The architecture designed and implemented by Mirantis enables rapid linear expansion or reconfiguration of the total available compute cycles. In this way, the iSuperGrid OpenStack cloud adds fresh hardware transparently, increasing its overall capacity with minimal latency or disruption.

Full Scale Supergrid
With the successful conclusion of the pilot, iSuperGrid is now rolling out a full-scale cloud environment with several hundred servers, on both sides of the Pacific Ocean. By using OpenStack to transparently expose capabilities unique to a particular server configuration directly to HPC workloads, without sacrificing the resource elasticity of the cloud environment, iSuperGrid has a highly fluid, flexible environment, at virtually unlimited scale. What’s more, it delivers the environment using an innovative business model to deliver raw compute power both to workloads needing sustained utilization as well as to workloads with on/off-peak processing needs.

About the Author

Boris Renski, MirantisBoris is co-founder and executive vice president at Mirantis, a leader in engineering services for OpenStack Cloud, He is an active board member of several IT companies, and chairman of AGroup, a leading human resource management and payroll solutions company in 22 countries. In addition, he is involved deeply in the investor community.

In the past, Boris served as vice president of business development at R&K, one of the largest IT conglomerates in Russia. He was also founder and CEO of Selectosa Systems, a software outsourcing company that was acquired in 2006.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire