Mirantis, iSuperGrid Partner on HPC Cloud Network

By Boris Renski

June 4, 2012

OpenStack Case Study: iSuperGrid and Mirantis

The Challenge

Cloud Computing and high performance computing (HPC) workloads might seem a natural fit. They do share key attributes:

  • Require a versatile infrastructure, where compute cycles can be brought to bear in flexible fashion on very diverse workloads.
  • Rely on fluid management of resource configurations.
  • Are well-suited to distributed computing problems, where processing can be spread over many units of physical hardware.

China's longest bridgeBut in practice, HPC workloads impose unique demands on the cloud: provisioning, configuration of compute resources and storage resources, and lifecycle management have needs of their own. In fact, running HPC workloads on conventional cloud infrastructure can lead to performance slowdowns, higher costs, and obstacles to the rapid iteration of workload cycles that HPC requires.

Information SuperGrid Technology (ISGT or iSuperGrid) is a cloud service provider whose system and application software make it possible to integrate distributed and parallel grid supercomputers into a massive and seamless global cloud computing platform. In this platform, each computer node leverages and harnesses the power of the other nodes to scale up processing capacity and capability when needed.

iSuperGrid has built an innovative new model to deliver this cloud platform to organizations with HPC needs. To marry the flexibility of cloud computing with the complexities of HPC, they turned to the OpenStack cloud infrastructure technology.

‘Supergrid’ Cloud

Working with Mirantis, a company that provides engineering services for OpenStack technology projects, iSuperGrid is building out a distributed OpenStack cloud network, numbering into the thousands of nodes, providing HPC and versatile hosting to a variety of emerging markets.

As part of its business model, iSuperGrid offers a fixed-size, pre-certified cloud server rack set, deployed as an on-demand resource for HPC workloads to a broad range of government, academic and commercial organizations. Each organization’s OpenStack cloud rack is, in turn, networked into a larger, collective ‘supergrid’. This way, any iSuperGrid customer can then offer spare HPC-capable compute cycles during off-peak hours, such as nights and weekends, to run HPC workloads to third parties. Configurations are changed on the fly to fit different types of HPC workloads, such as those that require large memory resources but little persistent storage, or vice-versa. These cycles can be sold directly, or brokered via iSuperGrid to anyone needing fixed-term cloud services.

OpenStack Use Case

HPC Workloads
Because it specializes in HPC, iSuperGrid delivers cloud services to health, education, industrial, logistics, mineral extraction, media/entertainment, and other markets in China and worldwide. What these diverse compute workloads have in common is their appetite for specialized, calculation-intensive compute operations.

Examples include:

‘Smart utilities’: municipal services such as electricity distribution, energy consumption, real-time on-road traffic analysis Science and engineering: Mineral and geology analysis, weather forecasting, biomedical research, chip and instrument designs

Media: Digital content rendering, delivery, and distribution

Logistics: batch and real-time calculations of equipment deployment and utilization, routing optimization, and throughput

The OpenStack Strategy
The iSuperGrid business strategy calls for delivering these services with dynamic provisioning that scales in a pay-as-you-go offering. Making it cost effective relies on high-efficiency utilization and rapid turnaround of allocation, so that compute supply and demand move in tight synchronization. OpenStack’s flexibility and scalability makes it a good choice. In order to base this solution on the OpenStack technology, iSuperGrid asked Mirantis to provide architectural and implementation guidance.

Technical Requirements

Performance Appetite
Because HPC workloads are by definition compute intensive, Mirantis first turned to benchmarking compute performance. In conventional cloud environments, virtualization throttles back the underlying hardware compute horsepower available to applications, by allocating machine cycles across multiple virtual machines. An HPC performance test showed the scope of the challenge. Comparison of a deep analytics workload on Amazon Web Services (AWS) vs. a dedicated HPC cluster on commodity hardware found the AWS cloud ran the workload 30x slower than the dedicated ‘non-cloud’ servers. Given that cloud environments such as AWS are optimized for deploying Web and transaction applications, it should come as no surprise that they perform sub-optimally. The question was then, could OpenStack do better?

OpenStack and Cloud Provisioning
Direct access to specialized low-level machine resources is essential to making it work in the cloud. But it’s more than raw resource access: rapid, cost-effective provisioning of incremental compute cycles with minimum overhead must feed bursts in processing appetite demanding quick access to raw compute power. Workloads such as smart-cities electric grid consumption tracking, real-time-analytics, simulations, logistics tracking, mineral extraction analysis, and similar performance-intensive applications cannot be satisfied by squeezing more work out of a pre-configured, fixed server footprint.

The OpenStack Solution

Cloud Configuration
The first iSuperGrid cloud, engineered and deployed on OpenStack in collaboration with Mirantis, featured approximately 50 server systems configured in three geographically dispersed datacenters across China. It offers both database and object storage, plus Storage-as-a-Service to support elastic compute node storage. These key cloud services are also configured for high availability.

OpenStack HPC Architecture
Working over a period of eight weeks with a team of six globally distributed engineers, Mirantis designed an architecture that would use OpenStack Essex components to blend the compute properties of a dedicated HPC cluster with the flexibility of a cloud deployment.

Bare Metal Provisioning
A key element of this architecture was bare-metal provisioning ‒ deploying well-defined, fully-functional OpenStack images on unconfigured hardware. Working from a boot server to connect to unprovisioned servers, the OpenStack cloud controller constructs a kernel that bootstraps a fully functional OpenStack OS image and connects it to the cloud fabric. The architecture designed and implemented by Mirantis enables rapid linear expansion or reconfiguration of the total available compute cycles. In this way, the iSuperGrid OpenStack cloud adds fresh hardware transparently, increasing its overall capacity with minimal latency or disruption.

Full Scale Supergrid
With the successful conclusion of the pilot, iSuperGrid is now rolling out a full-scale cloud environment with several hundred servers, on both sides of the Pacific Ocean. By using OpenStack to transparently expose capabilities unique to a particular server configuration directly to HPC workloads, without sacrificing the resource elasticity of the cloud environment, iSuperGrid has a highly fluid, flexible environment, at virtually unlimited scale. What’s more, it delivers the environment using an innovative business model to deliver raw compute power both to workloads needing sustained utilization as well as to workloads with on/off-peak processing needs.

About the Author

Boris Renski, MirantisBoris is co-founder and executive vice president at Mirantis, a leader in engineering services for OpenStack Cloud, He is an active board member of several IT companies, and chairman of AGroup, a leading human resource management and payroll solutions company in 22 countries. In addition, he is involved deeply in the investor community.

In the past, Boris served as vice president of business development at R&K, one of the largest IT conglomerates in Russia. He was also founder and CEO of Selectosa Systems, a software outsourcing company that was acquired in 2006.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in advanci Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

ESnet Now Moving More Than 1 Petabyte/wk

December 12, 2017

Optimizing ESnet (Energy Sciences Network), the world's fastest network for science, is an ongoing process. Recently a two-year collaboration by ESnet users – the Petascale DTN Project – achieved its ambitious goal t Read more…

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

SC17 Cluster Competition: Who Won and Why? Results Analyzed and Over-Analyzed

November 28, 2017

Everyone by now knows that Nanyang Technological University of Singapore (NTU) took home the highest LINPACK Award and the Overall Championship from the recently concluded SC17 Student Cluster Competition. We also already know how the teams did in the Highest LINPACK and Highest HPCG competitions, with Nanyang grabbing bragging rights for both benchmarks. Read more…

By Dan Olds

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This