Mirantis, iSuperGrid Partner on HPC Cloud Network

By Boris Renski

June 4, 2012

OpenStack Case Study: iSuperGrid and Mirantis

The Challenge

Cloud Computing and high performance computing (HPC) workloads might seem a natural fit. They do share key attributes:

  • Require a versatile infrastructure, where compute cycles can be brought to bear in flexible fashion on very diverse workloads.
  • Rely on fluid management of resource configurations.
  • Are well-suited to distributed computing problems, where processing can be spread over many units of physical hardware.

China's longest bridgeBut in practice, HPC workloads impose unique demands on the cloud: provisioning, configuration of compute resources and storage resources, and lifecycle management have needs of their own. In fact, running HPC workloads on conventional cloud infrastructure can lead to performance slowdowns, higher costs, and obstacles to the rapid iteration of workload cycles that HPC requires.

Information SuperGrid Technology (ISGT or iSuperGrid) is a cloud service provider whose system and application software make it possible to integrate distributed and parallel grid supercomputers into a massive and seamless global cloud computing platform. In this platform, each computer node leverages and harnesses the power of the other nodes to scale up processing capacity and capability when needed.

iSuperGrid has built an innovative new model to deliver this cloud platform to organizations with HPC needs. To marry the flexibility of cloud computing with the complexities of HPC, they turned to the OpenStack cloud infrastructure technology.

‘Supergrid’ Cloud

Working with Mirantis, a company that provides engineering services for OpenStack technology projects, iSuperGrid is building out a distributed OpenStack cloud network, numbering into the thousands of nodes, providing HPC and versatile hosting to a variety of emerging markets.

As part of its business model, iSuperGrid offers a fixed-size, pre-certified cloud server rack set, deployed as an on-demand resource for HPC workloads to a broad range of government, academic and commercial organizations. Each organization’s OpenStack cloud rack is, in turn, networked into a larger, collective ‘supergrid’. This way, any iSuperGrid customer can then offer spare HPC-capable compute cycles during off-peak hours, such as nights and weekends, to run HPC workloads to third parties. Configurations are changed on the fly to fit different types of HPC workloads, such as those that require large memory resources but little persistent storage, or vice-versa. These cycles can be sold directly, or brokered via iSuperGrid to anyone needing fixed-term cloud services.

OpenStack Use Case

HPC Workloads
Because it specializes in HPC, iSuperGrid delivers cloud services to health, education, industrial, logistics, mineral extraction, media/entertainment, and other markets in China and worldwide. What these diverse compute workloads have in common is their appetite for specialized, calculation-intensive compute operations.

Examples include:

‘Smart utilities’: municipal services such as electricity distribution, energy consumption, real-time on-road traffic analysis Science and engineering: Mineral and geology analysis, weather forecasting, biomedical research, chip and instrument designs

Media: Digital content rendering, delivery, and distribution

Logistics: batch and real-time calculations of equipment deployment and utilization, routing optimization, and throughput

The OpenStack Strategy
The iSuperGrid business strategy calls for delivering these services with dynamic provisioning that scales in a pay-as-you-go offering. Making it cost effective relies on high-efficiency utilization and rapid turnaround of allocation, so that compute supply and demand move in tight synchronization. OpenStack’s flexibility and scalability makes it a good choice. In order to base this solution on the OpenStack technology, iSuperGrid asked Mirantis to provide architectural and implementation guidance.

Technical Requirements

Performance Appetite
Because HPC workloads are by definition compute intensive, Mirantis first turned to benchmarking compute performance. In conventional cloud environments, virtualization throttles back the underlying hardware compute horsepower available to applications, by allocating machine cycles across multiple virtual machines. An HPC performance test showed the scope of the challenge. Comparison of a deep analytics workload on Amazon Web Services (AWS) vs. a dedicated HPC cluster on commodity hardware found the AWS cloud ran the workload 30x slower than the dedicated ‘non-cloud’ servers. Given that cloud environments such as AWS are optimized for deploying Web and transaction applications, it should come as no surprise that they perform sub-optimally. The question was then, could OpenStack do better?

OpenStack and Cloud Provisioning
Direct access to specialized low-level machine resources is essential to making it work in the cloud. But it’s more than raw resource access: rapid, cost-effective provisioning of incremental compute cycles with minimum overhead must feed bursts in processing appetite demanding quick access to raw compute power. Workloads such as smart-cities electric grid consumption tracking, real-time-analytics, simulations, logistics tracking, mineral extraction analysis, and similar performance-intensive applications cannot be satisfied by squeezing more work out of a pre-configured, fixed server footprint.

The OpenStack Solution

Cloud Configuration
The first iSuperGrid cloud, engineered and deployed on OpenStack in collaboration with Mirantis, featured approximately 50 server systems configured in three geographically dispersed datacenters across China. It offers both database and object storage, plus Storage-as-a-Service to support elastic compute node storage. These key cloud services are also configured for high availability.

OpenStack HPC Architecture
Working over a period of eight weeks with a team of six globally distributed engineers, Mirantis designed an architecture that would use OpenStack Essex components to blend the compute properties of a dedicated HPC cluster with the flexibility of a cloud deployment.

Bare Metal Provisioning
A key element of this architecture was bare-metal provisioning ‒ deploying well-defined, fully-functional OpenStack images on unconfigured hardware. Working from a boot server to connect to unprovisioned servers, the OpenStack cloud controller constructs a kernel that bootstraps a fully functional OpenStack OS image and connects it to the cloud fabric. The architecture designed and implemented by Mirantis enables rapid linear expansion or reconfiguration of the total available compute cycles. In this way, the iSuperGrid OpenStack cloud adds fresh hardware transparently, increasing its overall capacity with minimal latency or disruption.

Full Scale Supergrid
With the successful conclusion of the pilot, iSuperGrid is now rolling out a full-scale cloud environment with several hundred servers, on both sides of the Pacific Ocean. By using OpenStack to transparently expose capabilities unique to a particular server configuration directly to HPC workloads, without sacrificing the resource elasticity of the cloud environment, iSuperGrid has a highly fluid, flexible environment, at virtually unlimited scale. What’s more, it delivers the environment using an innovative business model to deliver raw compute power both to workloads needing sustained utilization as well as to workloads with on/off-peak processing needs.

About the Author

Boris Renski, MirantisBoris is co-founder and executive vice president at Mirantis, a leader in engineering services for OpenStack Cloud, He is an active board member of several IT companies, and chairman of AGroup, a leading human resource management and payroll solutions company in 22 countries. In addition, he is involved deeply in the investor community.

In the past, Boris served as vice president of business development at R&K, one of the largest IT conglomerates in Russia. He was also founder and CEO of Selectosa Systems, a software outsourcing company that was acquired in 2006.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This