Mirantis, iSuperGrid Partner on HPC Cloud Network

By Boris Renski

June 4, 2012

OpenStack Case Study: iSuperGrid and Mirantis

The Challenge

Cloud Computing and high performance computing (HPC) workloads might seem a natural fit. They do share key attributes:

  • Require a versatile infrastructure, where compute cycles can be brought to bear in flexible fashion on very diverse workloads.
  • Rely on fluid management of resource configurations.
  • Are well-suited to distributed computing problems, where processing can be spread over many units of physical hardware.

China's longest bridgeBut in practice, HPC workloads impose unique demands on the cloud: provisioning, configuration of compute resources and storage resources, and lifecycle management have needs of their own. In fact, running HPC workloads on conventional cloud infrastructure can lead to performance slowdowns, higher costs, and obstacles to the rapid iteration of workload cycles that HPC requires.

Information SuperGrid Technology (ISGT or iSuperGrid) is a cloud service provider whose system and application software make it possible to integrate distributed and parallel grid supercomputers into a massive and seamless global cloud computing platform. In this platform, each computer node leverages and harnesses the power of the other nodes to scale up processing capacity and capability when needed.

iSuperGrid has built an innovative new model to deliver this cloud platform to organizations with HPC needs. To marry the flexibility of cloud computing with the complexities of HPC, they turned to the OpenStack cloud infrastructure technology.

‘Supergrid’ Cloud

Working with Mirantis, a company that provides engineering services for OpenStack technology projects, iSuperGrid is building out a distributed OpenStack cloud network, numbering into the thousands of nodes, providing HPC and versatile hosting to a variety of emerging markets.

As part of its business model, iSuperGrid offers a fixed-size, pre-certified cloud server rack set, deployed as an on-demand resource for HPC workloads to a broad range of government, academic and commercial organizations. Each organization’s OpenStack cloud rack is, in turn, networked into a larger, collective ‘supergrid’. This way, any iSuperGrid customer can then offer spare HPC-capable compute cycles during off-peak hours, such as nights and weekends, to run HPC workloads to third parties. Configurations are changed on the fly to fit different types of HPC workloads, such as those that require large memory resources but little persistent storage, or vice-versa. These cycles can be sold directly, or brokered via iSuperGrid to anyone needing fixed-term cloud services.

OpenStack Use Case

HPC Workloads
Because it specializes in HPC, iSuperGrid delivers cloud services to health, education, industrial, logistics, mineral extraction, media/entertainment, and other markets in China and worldwide. What these diverse compute workloads have in common is their appetite for specialized, calculation-intensive compute operations.

Examples include:

‘Smart utilities’: municipal services such as electricity distribution, energy consumption, real-time on-road traffic analysis Science and engineering: Mineral and geology analysis, weather forecasting, biomedical research, chip and instrument designs

Media: Digital content rendering, delivery, and distribution

Logistics: batch and real-time calculations of equipment deployment and utilization, routing optimization, and throughput

The OpenStack Strategy
The iSuperGrid business strategy calls for delivering these services with dynamic provisioning that scales in a pay-as-you-go offering. Making it cost effective relies on high-efficiency utilization and rapid turnaround of allocation, so that compute supply and demand move in tight synchronization. OpenStack’s flexibility and scalability makes it a good choice. In order to base this solution on the OpenStack technology, iSuperGrid asked Mirantis to provide architectural and implementation guidance.

Technical Requirements

Performance Appetite
Because HPC workloads are by definition compute intensive, Mirantis first turned to benchmarking compute performance. In conventional cloud environments, virtualization throttles back the underlying hardware compute horsepower available to applications, by allocating machine cycles across multiple virtual machines. An HPC performance test showed the scope of the challenge. Comparison of a deep analytics workload on Amazon Web Services (AWS) vs. a dedicated HPC cluster on commodity hardware found the AWS cloud ran the workload 30x slower than the dedicated ‘non-cloud’ servers. Given that cloud environments such as AWS are optimized for deploying Web and transaction applications, it should come as no surprise that they perform sub-optimally. The question was then, could OpenStack do better?

OpenStack and Cloud Provisioning
Direct access to specialized low-level machine resources is essential to making it work in the cloud. But it’s more than raw resource access: rapid, cost-effective provisioning of incremental compute cycles with minimum overhead must feed bursts in processing appetite demanding quick access to raw compute power. Workloads such as smart-cities electric grid consumption tracking, real-time-analytics, simulations, logistics tracking, mineral extraction analysis, and similar performance-intensive applications cannot be satisfied by squeezing more work out of a pre-configured, fixed server footprint.

The OpenStack Solution

Cloud Configuration
The first iSuperGrid cloud, engineered and deployed on OpenStack in collaboration with Mirantis, featured approximately 50 server systems configured in three geographically dispersed datacenters across China. It offers both database and object storage, plus Storage-as-a-Service to support elastic compute node storage. These key cloud services are also configured for high availability.

OpenStack HPC Architecture
Working over a period of eight weeks with a team of six globally distributed engineers, Mirantis designed an architecture that would use OpenStack Essex components to blend the compute properties of a dedicated HPC cluster with the flexibility of a cloud deployment.

Bare Metal Provisioning
A key element of this architecture was bare-metal provisioning ‒ deploying well-defined, fully-functional OpenStack images on unconfigured hardware. Working from a boot server to connect to unprovisioned servers, the OpenStack cloud controller constructs a kernel that bootstraps a fully functional OpenStack OS image and connects it to the cloud fabric. The architecture designed and implemented by Mirantis enables rapid linear expansion or reconfiguration of the total available compute cycles. In this way, the iSuperGrid OpenStack cloud adds fresh hardware transparently, increasing its overall capacity with minimal latency or disruption.

Full Scale Supergrid
With the successful conclusion of the pilot, iSuperGrid is now rolling out a full-scale cloud environment with several hundred servers, on both sides of the Pacific Ocean. By using OpenStack to transparently expose capabilities unique to a particular server configuration directly to HPC workloads, without sacrificing the resource elasticity of the cloud environment, iSuperGrid has a highly fluid, flexible environment, at virtually unlimited scale. What’s more, it delivers the environment using an innovative business model to deliver raw compute power both to workloads needing sustained utilization as well as to workloads with on/off-peak processing needs.

About the Author

Boris Renski, MirantisBoris is co-founder and executive vice president at Mirantis, a leader in engineering services for OpenStack Cloud, He is an active board member of several IT companies, and chairman of AGroup, a leading human resource management and payroll solutions company in 22 countries. In addition, he is involved deeply in the investor community.

In the past, Boris served as vice president of business development at R&K, one of the largest IT conglomerates in Russia. He was also founder and CEO of Selectosa Systems, a software outsourcing company that was acquired in 2006.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Frames Quantum Race as Two-Dimensional

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a pres Read more…

By Tiffany Trader

Affordable Optical Technology Needed Says HPE’s Daley

April 26, 2018

While not new, the challenges presented by computer cabling/PCB circuit routing design – cost, performance, space requirements, and power management – have coalesced into a major headache in advanced HPC system desig Read more…

By John Russell

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

Google Frames Quantum Race as Two-Dimensional

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field an Read more…

By Tiffany Trader

Affordable Optical Technology Needed Says HPE’s Daley

April 26, 2018

While not new, the challenges presented by computer cabling/PCB circuit routing design – cost, performance, space requirements, and power management – have Read more…

By John Russell

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This