Petaflop In a Box

By Gary Johnson

June 6, 2012

As we move down the road toward exascale computing and engage in discussion of zettascale, one issue becomes increasingly obvious: we are leaving a large part of the HPC community behind. Most engineers and scientists compute, at best, at the terascale level, and these are the people using HPC to enhance our economic competitiveness. In addition to pushing the peak of HPC higher, should we also take steps to broaden its base and bring more of the community along with us? Could broad deployment of compact, power efficient petascale computers help accomplish this?

There has been, and continues to be, lots of discussion about exascale computing. What are the applications drivers for exascale computing? Is power the problem, or is it not the problem? When will we get to exascale – in 2018, 2020, or later? What is the plan for the US Department of Energy’s exascale computing program? Beyond that, zettascale computing is also in play. Will we never get there, or will it happen?

Amidst all of this controversy, there does seem to be a general consensus about the technical barriers to exascale, in particular:

  • Power consumption
  • Data movement
  • Hardware and Software Resiliency
  • Performance-oriented runtime systems software
  • Exposing and exploiting parallelism

Of these barriers, power consumption is a current issue that is exacerbated by moving to exascale. Arguably, the other barriers are more intrinsically exascale ones. Also, note that there are substantial software development requirements for dealing with these other exascale barriers. So, power consumption is a separable issue and may be dealt with at petascale, while leaving the intrinsic exascale barriers to be handled as such.

Despite what one reads in press releases, most scientists and engineers don’t compute at the petascale. Although our most powerful supercomputers are available for industrial use, only a very small fraction of the available time actually goes to industrial applications. A problem that surfaces in science circles more often than one might expect is the shortage of high-end cycles available for day-to-day work, rather than “hero runs” on petascale supercomputers. Everyday science and engineering is carried out largely on computers ranging from notebooks, operating at gigaflops, up through server racks, operating at teraflops. So, since most scientists and engineers compute at the terascale and below, their transition to petascale may be challenging , especially for those running legacy applications on legacy hardware.

Is there a way to help our scientists and engineers get to petascale sooner, while still travelling in the direction of exascale? We’re already computing (on a limited basis) at the petascale and if we extrapolate the historical trend, by about 2016 the bottom computer on the TOP500 list will be operating at a petaflop.

At first glance, that may not look so bad. We can just wait until 2016 and things will take care of themselves. The problem is that the majority of science and engineering is done below the level of that 500th computer and will still be sub-petascale.

If, in addition to pursuing exascale, we spin out petascale boxes as soon as possible, and in large numbers, then we can promote the development of scalable software to move beyond terascale; make petascale computing widely accessible; and help make the transition of the broad science and engineering community to petascale smoother and quicker. Also, when exascale does arrive, it will be more broadly embraced and used.

Our highest-end computing systems are very large and consume lots of power. To reach exascale in any credible way, machine footprints will need to shrink and power consumption will need to come down. Last year, John Kelly from IBM suggested that a byproduct of success in building an exaflop computer would be a petaflop in 1/3 of a rack. If we assume that DOE’s target of 20 megawatts (MW) power consumption for an exascale system is achieved and that 1/3 of a rack is about one cubic meter, then a petaflop in a cubic meter box would consume about 20 kilowatts (kW).

Such a system would consume about as much power as 4 electric clothes dryers. If we wanted to purchase a dedicated off-grid power supply for a petaflop box, we could find one on the internet for about $5,000. (Then we could measure flops/gallon!) On the US electric grid, the average price of 1 kWh in 2011 was 11.20 cents. So, one could operate the system continuously for a year at a power cost of about $20,000. These may be oversimplifications, but you get the point.

So far, so good. Now all we need to do is get a petaflop into that one cubic meter box.

Currently, one Blue Gene/Q cabinet has a volume of just over three cubic meters, holds hardware with a theoretical peak performance of just over 200 teraflops, and typically consumes about 65 kW. So using this technology as an example, to get a petaflop in a cubic meter we’d need to reduce the volume and power consumption by a factor of three and increase performance by a factor of five.

While these factors may be challenging, they certainly don’t seem impossible to achieve. Getting to exascale will require this sort of accomplishment, and a lot more. So, if we focus on getting a petaflop in a box within the next decade or hopefully sooner, we’ll be well on the way to exaflops systems, but without the additional, intrinsic, exascale barriers mentioned previously.

So, one could think of our petaflop box as one node in a thousand-node exascale system. Also note that, because of the expense of data movement at exascale, applications algorithms will probably be designed to minimize that data movement. So, most of the number crunching in exascale computers will probably take place within a “petascale radius.”

These compact petaflop machines would be useful in their own right and could be deployed as a tools for science and industry. Such a deployment could help move a lot more applications scientists and engineers from terascale to petascale computing. Furthermore, these petaflop systems could be shared by multiple users so that more people would be exposed to (at least) teraflop computing.

Right now, both federal policy and computer industry plans seem to be focused on getting to exascale while expecting only a small number of systems to be built and deployed. Clearly, there are scientific, economic and national security applications that require exascale computing. There is also a global competition to get to exascale. So, there doesn’t seem to be much room for doubt about fully engaging in the race to exascale.

However, there may be ways to have our cake and eat it too. There is widespread concern about our economic competitiveness and a common belief that HPC will play major roles in moving our industries forward. So, how about a phased deployment of lots of petascale systems – starting now?

Suppose we undertook, as a matter of national policy, to deploy something like 1,000 petaflop boxes over the next decade. The target system specifications would be as discussed here. But the early prototype systems could be larger, more power consumptive and hosted at “friendly” sites, as they are now. As progress is made toward the design targets, systems can be more broadly dispersed to sites hosted by applications industries, universities and commercial computing service providers.

As the full-scale deployment is approached, the petaflop boxes could be connected into an exascale cloud. This would provide a distributed national resource of interconnected petascale systems, of various architectures, to support new science and renewed economic growth. The user community for this national resource would consist of all those who could make the case for using it effectively.

The cost to the end users would be the same as the cost of using our interstate highway system, namely zero. The cost to the nation would be about the cost of one exascale system. If you think the cost might be higher, drop the deployment size to, say, 500 petaflop boxes. That would still be a large cloud, if not quite exascale.

By the way, exascale systems and exascale clouds are not ideas in competition. The each have their place. It appears that we could get them both as we move forward to the exascale. Also, if there were an exascale cloud, it should include those exascale systems as very powerful nodes, thus becoming a multi-exascale cloud.

What is currently missing is an open, thoughtful and vigorous discussion of petaflop boxes and exascale clouds, a discussion that could serve as a basis for policy formulation. We’ve seen this discussion take place over the past several years, on a global scale, for exascale systems, so it could also happen for broad deployment of petaflop boxes.

Might the petaflop in a box and/or exascale cloud be worthy national objectives? If so, do we have the will to pursue them? Let us know what you think.

About the author

Gary M. Johnson is the founder of Computational Science Solutions, LLC, whose mission is to develop, advocate, and implement solutions for the global computational science and engineering community.

Dr. Johnson specializes in management of high performance computing, applied mathematics, and computational science research activities; advocacy, development, and management of high performance computing centers; development of national science and technology policy; and creation of education and research programs in computational engineering and science.

He has worked in Academia, Industry and Government. He has held full professorships at Colorado State University and George Mason University, been a researcher at United Technologies Research Center, and worked for the Department of Defense, NASA, and the Department of Energy.

He is a graduate of the U.S. Air Force Academy; holds advanced degrees from Caltech and the von Karman Institute; and has a Ph.D. in applied sciences from the University of Brussels.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM and NSF Computing Pioneer Erich Bloch Dies at 91

November 30, 2016

Erich Bloch, a computational pioneer whose competitive zeal and commercial bent helped transform the National Science Foundation while he was its director, died last Friday at age 91. Bloch was a productive force to be reckoned. During his long stint at IBM prior to joining NSF Bloch spearheaded development of the “Stretch” supercomputer and IBM’s phenomenally successful System/360. Read more…

By John Russell

Pioneering Programmers Awarded Presidential Medal of Freedom

November 30, 2016

In an awards ceremony on November 22, President Barack Obama recognized 21 recipients with the Presidential Medal of Freedom, the Nation’s highest civilian honor. Read more…

By Tiffany Trader

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This