Petaflop In a Box

By Gary Johnson

June 6, 2012

As we move down the road toward exascale computing and engage in discussion of zettascale, one issue becomes increasingly obvious: we are leaving a large part of the HPC community behind. Most engineers and scientists compute, at best, at the terascale level, and these are the people using HPC to enhance our economic competitiveness. In addition to pushing the peak of HPC higher, should we also take steps to broaden its base and bring more of the community along with us? Could broad deployment of compact, power efficient petascale computers help accomplish this?

There has been, and continues to be, lots of discussion about exascale computing. What are the applications drivers for exascale computing? Is power the problem, or is it not the problem? When will we get to exascale – in 2018, 2020, or later? What is the plan for the US Department of Energy’s exascale computing program? Beyond that, zettascale computing is also in play. Will we never get there, or will it happen?

Amidst all of this controversy, there does seem to be a general consensus about the technical barriers to exascale, in particular:

  • Power consumption
  • Data movement
  • Hardware and Software Resiliency
  • Performance-oriented runtime systems software
  • Exposing and exploiting parallelism

Of these barriers, power consumption is a current issue that is exacerbated by moving to exascale. Arguably, the other barriers are more intrinsically exascale ones. Also, note that there are substantial software development requirements for dealing with these other exascale barriers. So, power consumption is a separable issue and may be dealt with at petascale, while leaving the intrinsic exascale barriers to be handled as such.

Despite what one reads in press releases, most scientists and engineers don’t compute at the petascale. Although our most powerful supercomputers are available for industrial use, only a very small fraction of the available time actually goes to industrial applications. A problem that surfaces in science circles more often than one might expect is the shortage of high-end cycles available for day-to-day work, rather than “hero runs” on petascale supercomputers. Everyday science and engineering is carried out largely on computers ranging from notebooks, operating at gigaflops, up through server racks, operating at teraflops. So, since most scientists and engineers compute at the terascale and below, their transition to petascale may be challenging , especially for those running legacy applications on legacy hardware.

Is there a way to help our scientists and engineers get to petascale sooner, while still travelling in the direction of exascale? We’re already computing (on a limited basis) at the petascale and if we extrapolate the historical trend, by about 2016 the bottom computer on the TOP500 list will be operating at a petaflop.

At first glance, that may not look so bad. We can just wait until 2016 and things will take care of themselves. The problem is that the majority of science and engineering is done below the level of that 500th computer and will still be sub-petascale.

If, in addition to pursuing exascale, we spin out petascale boxes as soon as possible, and in large numbers, then we can promote the development of scalable software to move beyond terascale; make petascale computing widely accessible; and help make the transition of the broad science and engineering community to petascale smoother and quicker. Also, when exascale does arrive, it will be more broadly embraced and used.

Our highest-end computing systems are very large and consume lots of power. To reach exascale in any credible way, machine footprints will need to shrink and power consumption will need to come down. Last year, John Kelly from IBM suggested that a byproduct of success in building an exaflop computer would be a petaflop in 1/3 of a rack. If we assume that DOE’s target of 20 megawatts (MW) power consumption for an exascale system is achieved and that 1/3 of a rack is about one cubic meter, then a petaflop in a cubic meter box would consume about 20 kilowatts (kW).

Such a system would consume about as much power as 4 electric clothes dryers. If we wanted to purchase a dedicated off-grid power supply for a petaflop box, we could find one on the internet for about $5,000. (Then we could measure flops/gallon!) On the US electric grid, the average price of 1 kWh in 2011 was 11.20 cents. So, one could operate the system continuously for a year at a power cost of about $20,000. These may be oversimplifications, but you get the point.

So far, so good. Now all we need to do is get a petaflop into that one cubic meter box.

Currently, one Blue Gene/Q cabinet has a volume of just over three cubic meters, holds hardware with a theoretical peak performance of just over 200 teraflops, and typically consumes about 65 kW. So using this technology as an example, to get a petaflop in a cubic meter we’d need to reduce the volume and power consumption by a factor of three and increase performance by a factor of five.

While these factors may be challenging, they certainly don’t seem impossible to achieve. Getting to exascale will require this sort of accomplishment, and a lot more. So, if we focus on getting a petaflop in a box within the next decade or hopefully sooner, we’ll be well on the way to exaflops systems, but without the additional, intrinsic, exascale barriers mentioned previously.

So, one could think of our petaflop box as one node in a thousand-node exascale system. Also note that, because of the expense of data movement at exascale, applications algorithms will probably be designed to minimize that data movement. So, most of the number crunching in exascale computers will probably take place within a “petascale radius.”

These compact petaflop machines would be useful in their own right and could be deployed as a tools for science and industry. Such a deployment could help move a lot more applications scientists and engineers from terascale to petascale computing. Furthermore, these petaflop systems could be shared by multiple users so that more people would be exposed to (at least) teraflop computing.

Right now, both federal policy and computer industry plans seem to be focused on getting to exascale while expecting only a small number of systems to be built and deployed. Clearly, there are scientific, economic and national security applications that require exascale computing. There is also a global competition to get to exascale. So, there doesn’t seem to be much room for doubt about fully engaging in the race to exascale.

However, there may be ways to have our cake and eat it too. There is widespread concern about our economic competitiveness and a common belief that HPC will play major roles in moving our industries forward. So, how about a phased deployment of lots of petascale systems – starting now?

Suppose we undertook, as a matter of national policy, to deploy something like 1,000 petaflop boxes over the next decade. The target system specifications would be as discussed here. But the early prototype systems could be larger, more power consumptive and hosted at “friendly” sites, as they are now. As progress is made toward the design targets, systems can be more broadly dispersed to sites hosted by applications industries, universities and commercial computing service providers.

As the full-scale deployment is approached, the petaflop boxes could be connected into an exascale cloud. This would provide a distributed national resource of interconnected petascale systems, of various architectures, to support new science and renewed economic growth. The user community for this national resource would consist of all those who could make the case for using it effectively.

The cost to the end users would be the same as the cost of using our interstate highway system, namely zero. The cost to the nation would be about the cost of one exascale system. If you think the cost might be higher, drop the deployment size to, say, 500 petaflop boxes. That would still be a large cloud, if not quite exascale.

By the way, exascale systems and exascale clouds are not ideas in competition. The each have their place. It appears that we could get them both as we move forward to the exascale. Also, if there were an exascale cloud, it should include those exascale systems as very powerful nodes, thus becoming a multi-exascale cloud.

What is currently missing is an open, thoughtful and vigorous discussion of petaflop boxes and exascale clouds, a discussion that could serve as a basis for policy formulation. We’ve seen this discussion take place over the past several years, on a global scale, for exascale systems, so it could also happen for broad deployment of petaflop boxes.

Might the petaflop in a box and/or exascale cloud be worthy national objectives? If so, do we have the will to pursue them? Let us know what you think.

About the author

Gary M. Johnson is the founder of Computational Science Solutions, LLC, whose mission is to develop, advocate, and implement solutions for the global computational science and engineering community.

Dr. Johnson specializes in management of high performance computing, applied mathematics, and computational science research activities; advocacy, development, and management of high performance computing centers; development of national science and technology policy; and creation of education and research programs in computational engineering and science.

He has worked in Academia, Industry and Government. He has held full professorships at Colorado State University and George Mason University, been a researcher at United Technologies Research Center, and worked for the Department of Defense, NASA, and the Department of Energy.

He is a graduate of the U.S. Air Force Academy; holds advanced degrees from Caltech and the von Karman Institute; and has a Ph.D. in applied sciences from the University of Brussels.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

AMD Announces Flurry of New Chips

October 10, 2024

AMD today announced several new chips including its newest Instinct GPU — the MI325X — as it chases Nvidia. Other new devices announced at the company event in San Francisco included the 5th Gen AMD EPYC processors, Read more…

NSF Grants $107,600 to English Professors to Research Aurora Supercomputer

October 9, 2024

The National Science Foundation has granted $107,600 to English professors at US universities to unearth the mysteries of the Aurora supercomputer. The two-year grant recipients will write up what the Aurora supercompute Read more…

VAST Looks Inward, Outward for An AI Edge

October 9, 2024

There’s no single best way to respond to the explosion of data and AI. Sometimes you need to bring everything into your own unified platform. Other times, you lean on friends and neighbors to chart a way forward. Those Read more…

Google Reports Progress on Quantum Devices beyond Supercomputer Capability

October 9, 2024

A Google-led team of researchers has presented more evidence that it’s possible to run productive circuits on today’s near-term intermediate scale quantum devices that are beyond the reach of classical computing. � Read more…

At 50, Foxconn Celebrates Graduation from Connectors to AI Supercomputing

October 8, 2024

Foxconn is celebrating its 50th birthday this year. It started by making connectors, then moved to systems, and now, a supercomputer. The company announced it would build the supercomputer with Nvidia's Blackwell GPUs an Read more…

ZLUDA Takes Third Wack as a CUDA Emulator

October 7, 2024

The ZLUDA CUDA emulator is back in its third invocation. At one point, the project was quietly funded by AMD and demonstrated the ability to run unmodified CUDA applications with near-native performance on AMD GPUs. Cons Read more…

NSF Grants $107,600 to English Professors to Research Aurora Supercomputer

October 9, 2024

The National Science Foundation has granted $107,600 to English professors at US universities to unearth the mysteries of the Aurora supercomputer. The two-year Read more…

VAST Looks Inward, Outward for An AI Edge

October 9, 2024

There’s no single best way to respond to the explosion of data and AI. Sometimes you need to bring everything into your own unified platform. Other times, you Read more…

Google Reports Progress on Quantum Devices beyond Supercomputer Capability

October 9, 2024

A Google-led team of researchers has presented more evidence that it’s possible to run productive circuits on today’s near-term intermediate scale quantum d Read more…

At 50, Foxconn Celebrates Graduation from Connectors to AI Supercomputing

October 8, 2024

Foxconn is celebrating its 50th birthday this year. It started by making connectors, then moved to systems, and now, a supercomputer. The company announced it w Read more…

The New MLPerf Storage Benchmark Runs Without ML Accelerators

October 3, 2024

MLCommons is known for its independent Machine Learning (ML) benchmarks. These benchmarks have focused on mathematical ML operations and accelerators (e.g., Nvi Read more…

DataPelago Unveils Universal Engine to Unite Big Data, Advanced Analytics, HPC, and AI Workloads

October 3, 2024

DataPelago this week emerged from stealth with a new virtualization layer that it says will allow users to move AI, data analytics, and ETL workloads to whateve Read more…

Stayin’ Alive: Intel’s Falcon Shores GPU Will Survive Restructuring

October 2, 2024

Intel's upcoming Falcon Shores GPU will survive the brutal cost-cutting measures as part of its "next phase of transformation." An Intel spokeswoman confirmed t Read more…

How GenAI Will Impact Jobs In the Real World

September 30, 2024

There’s been a lot of fear, uncertainty, and doubt (FUD) about the potential for generative AI to take people’s jobs. The capability of large language model Read more…

Shutterstock_2176157037

Intel’s Falcon Shores Future Looks Bleak as It Concedes AI Training to GPU Rivals

September 17, 2024

Intel's Falcon Shores future looks bleak as it concedes AI training to GPU rivals On Monday, Intel sent a letter to employees detailing its comeback plan after Read more…

Granite Rapids HPC Benchmarks: I’m Thinking Intel Is Back (Updated)

September 25, 2024

Waiting is the hardest part. In the fall of 2023, HPCwire wrote about the new diverging Xeon processor strategy from Intel. Instead of a on-size-fits all approa Read more…

Ansys Fluent® Adds AMD Instinct™ MI200 and MI300 Acceleration to Power CFD Simulations

September 23, 2024

Ansys Fluent® is well-known in the commercial computational fluid dynamics (CFD) space and is praised for its versatility as a general-purpose solver. Its impr Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Leading Solution Providers

Contributors

IBM Develops New Quantum Benchmarking Tool — Benchpress

September 26, 2024

Benchmarking is an important topic in quantum computing. There’s consensus it’s needed but opinions vary widely on how to go about it. Last week, IBM introd Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Quantum and AI: Navigating the Resource Challenge

September 18, 2024

Rapid advancements in quantum computing are bringing a new era of technological possibilities. However, as quantum technology progresses, there are growing conc Read more…

Google’s DataGemma Tackles AI Hallucination

September 18, 2024

The rapid evolution of large language models (LLMs) has fueled significant advancement in AI, enabling these systems to analyze text, generate summaries, sugges Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Microsoft, Quantinuum Use Hybrid Workflow to Simulate Catalyst

September 13, 2024

Microsoft and Quantinuum reported the ability to create 12 logical qubits on Quantinuum's H2 trapped ion system this week and also reported using two logical qu Read more…

US Implements Controls on Quantum Computing and other Technologies

September 27, 2024

Yesterday the Commerce Department announced export controls on quantum computing technologies as well as new controls for advanced semiconductors and additive Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire