Petaflop In a Box

By Gary Johnson

June 6, 2012

As we move down the road toward exascale computing and engage in discussion of zettascale, one issue becomes increasingly obvious: we are leaving a large part of the HPC community behind. Most engineers and scientists compute, at best, at the terascale level, and these are the people using HPC to enhance our economic competitiveness. In addition to pushing the peak of HPC higher, should we also take steps to broaden its base and bring more of the community along with us? Could broad deployment of compact, power efficient petascale computers help accomplish this?

There has been, and continues to be, lots of discussion about exascale computing. What are the applications drivers for exascale computing? Is power the problem, or is it not the problem? When will we get to exascale – in 2018, 2020, or later? What is the plan for the US Department of Energy’s exascale computing program? Beyond that, zettascale computing is also in play. Will we never get there, or will it happen?

Amidst all of this controversy, there does seem to be a general consensus about the technical barriers to exascale, in particular:

  • Power consumption
  • Data movement
  • Hardware and Software Resiliency
  • Performance-oriented runtime systems software
  • Exposing and exploiting parallelism

Of these barriers, power consumption is a current issue that is exacerbated by moving to exascale. Arguably, the other barriers are more intrinsically exascale ones. Also, note that there are substantial software development requirements for dealing with these other exascale barriers. So, power consumption is a separable issue and may be dealt with at petascale, while leaving the intrinsic exascale barriers to be handled as such.

Despite what one reads in press releases, most scientists and engineers don’t compute at the petascale. Although our most powerful supercomputers are available for industrial use, only a very small fraction of the available time actually goes to industrial applications. A problem that surfaces in science circles more often than one might expect is the shortage of high-end cycles available for day-to-day work, rather than “hero runs” on petascale supercomputers. Everyday science and engineering is carried out largely on computers ranging from notebooks, operating at gigaflops, up through server racks, operating at teraflops. So, since most scientists and engineers compute at the terascale and below, their transition to petascale may be challenging , especially for those running legacy applications on legacy hardware.

Is there a way to help our scientists and engineers get to petascale sooner, while still travelling in the direction of exascale? We’re already computing (on a limited basis) at the petascale and if we extrapolate the historical trend, by about 2016 the bottom computer on the TOP500 list will be operating at a petaflop.

At first glance, that may not look so bad. We can just wait until 2016 and things will take care of themselves. The problem is that the majority of science and engineering is done below the level of that 500th computer and will still be sub-petascale.

If, in addition to pursuing exascale, we spin out petascale boxes as soon as possible, and in large numbers, then we can promote the development of scalable software to move beyond terascale; make petascale computing widely accessible; and help make the transition of the broad science and engineering community to petascale smoother and quicker. Also, when exascale does arrive, it will be more broadly embraced and used.

Our highest-end computing systems are very large and consume lots of power. To reach exascale in any credible way, machine footprints will need to shrink and power consumption will need to come down. Last year, John Kelly from IBM suggested that a byproduct of success in building an exaflop computer would be a petaflop in 1/3 of a rack. If we assume that DOE’s target of 20 megawatts (MW) power consumption for an exascale system is achieved and that 1/3 of a rack is about one cubic meter, then a petaflop in a cubic meter box would consume about 20 kilowatts (kW).

Such a system would consume about as much power as 4 electric clothes dryers. If we wanted to purchase a dedicated off-grid power supply for a petaflop box, we could find one on the internet for about $5,000. (Then we could measure flops/gallon!) On the US electric grid, the average price of 1 kWh in 2011 was 11.20 cents. So, one could operate the system continuously for a year at a power cost of about $20,000. These may be oversimplifications, but you get the point.

So far, so good. Now all we need to do is get a petaflop into that one cubic meter box.

Currently, one Blue Gene/Q cabinet has a volume of just over three cubic meters, holds hardware with a theoretical peak performance of just over 200 teraflops, and typically consumes about 65 kW. So using this technology as an example, to get a petaflop in a cubic meter we’d need to reduce the volume and power consumption by a factor of three and increase performance by a factor of five.

While these factors may be challenging, they certainly don’t seem impossible to achieve. Getting to exascale will require this sort of accomplishment, and a lot more. So, if we focus on getting a petaflop in a box within the next decade or hopefully sooner, we’ll be well on the way to exaflops systems, but without the additional, intrinsic, exascale barriers mentioned previously.

So, one could think of our petaflop box as one node in a thousand-node exascale system. Also note that, because of the expense of data movement at exascale, applications algorithms will probably be designed to minimize that data movement. So, most of the number crunching in exascale computers will probably take place within a “petascale radius.”

These compact petaflop machines would be useful in their own right and could be deployed as a tools for science and industry. Such a deployment could help move a lot more applications scientists and engineers from terascale to petascale computing. Furthermore, these petaflop systems could be shared by multiple users so that more people would be exposed to (at least) teraflop computing.

Right now, both federal policy and computer industry plans seem to be focused on getting to exascale while expecting only a small number of systems to be built and deployed. Clearly, there are scientific, economic and national security applications that require exascale computing. There is also a global competition to get to exascale. So, there doesn’t seem to be much room for doubt about fully engaging in the race to exascale.

However, there may be ways to have our cake and eat it too. There is widespread concern about our economic competitiveness and a common belief that HPC will play major roles in moving our industries forward. So, how about a phased deployment of lots of petascale systems – starting now?

Suppose we undertook, as a matter of national policy, to deploy something like 1,000 petaflop boxes over the next decade. The target system specifications would be as discussed here. But the early prototype systems could be larger, more power consumptive and hosted at “friendly” sites, as they are now. As progress is made toward the design targets, systems can be more broadly dispersed to sites hosted by applications industries, universities and commercial computing service providers.

As the full-scale deployment is approached, the petaflop boxes could be connected into an exascale cloud. This would provide a distributed national resource of interconnected petascale systems, of various architectures, to support new science and renewed economic growth. The user community for this national resource would consist of all those who could make the case for using it effectively.

The cost to the end users would be the same as the cost of using our interstate highway system, namely zero. The cost to the nation would be about the cost of one exascale system. If you think the cost might be higher, drop the deployment size to, say, 500 petaflop boxes. That would still be a large cloud, if not quite exascale.

By the way, exascale systems and exascale clouds are not ideas in competition. The each have their place. It appears that we could get them both as we move forward to the exascale. Also, if there were an exascale cloud, it should include those exascale systems as very powerful nodes, thus becoming a multi-exascale cloud.

What is currently missing is an open, thoughtful and vigorous discussion of petaflop boxes and exascale clouds, a discussion that could serve as a basis for policy formulation. We’ve seen this discussion take place over the past several years, on a global scale, for exascale systems, so it could also happen for broad deployment of petaflop boxes.

Might the petaflop in a box and/or exascale cloud be worthy national objectives? If so, do we have the will to pursue them? Let us know what you think.

About the author

Gary M. Johnson is the founder of Computational Science Solutions, LLC, whose mission is to develop, advocate, and implement solutions for the global computational science and engineering community.

Dr. Johnson specializes in management of high performance computing, applied mathematics, and computational science research activities; advocacy, development, and management of high performance computing centers; development of national science and technology policy; and creation of education and research programs in computational engineering and science.

He has worked in Academia, Industry and Government. He has held full professorships at Colorado State University and George Mason University, been a researcher at United Technologies Research Center, and worked for the Department of Defense, NASA, and the Department of Energy.

He is a graduate of the U.S. Air Force Academy; holds advanced degrees from Caltech and the von Karman Institute; and has a Ph.D. in applied sciences from the University of Brussels.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

2022 Road Trip: NASA Ames Takes Off

November 25, 2022

I left Dallas very early Friday morning after the conclusion of SC22. I had a race with the devil to get from Dallas to Mountain View, Calif., by Sunday. According to Google Maps, this 1,957 mile jaunt would be the longe Read more…

2022 Road Trip: Sandia Brain Trust Sounds Off

November 24, 2022

As the 2022 Great American Supercomputing Road Trip carries on, it’s Sandia’s turn. It was a bright sunny day when I rolled into Albuquerque after a high-speed run from Los Alamos National Laboratory. My interview su Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the car on November 3rd and headed towards SC22 in Dallas, stoppi Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built on technology developed at Harvard and MIT, QuEra, is one of Read more…

AWS Solution Channel

Shutterstock 1648511269

Avoid overspending with AWS Batch using a serverless cost guardian monitoring architecture

Pay-as-you-go resources are a compelling but daunting concept for budget conscious research customers. Uncertainty of cloud costs is a barrier-to-entry for most, and having near real-time cost visibility is critical. Read more…

 

shutterstock_1431394361

AI and the need for purpose-built cloud infrastructure

Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected “how supercomputing is continuously changing the world by Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built o Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected Read more…

Quantum – Are We There (or Close) Yet? No, Says the Panel

November 19, 2022

For all of its politeness, a fascinating panel on the last day of SC22 – Quantum Computing: A Future for HPC Acceleration? – mostly served to illustrate the Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

Gordon Bell Special Prize Goes to LLM-Based Covid Variant Prediction

November 17, 2022

For three years running, ACM has awarded not only its long-standing Gordon Bell Prize (read more about this year’s winner here!) but also its Gordon Bell Spec Read more…

2022 Gordon Bell Prize Goes to Plasma Accelerator Research

November 17, 2022

At the awards ceremony at SC22 in Dallas today, ACM awarded the 2022 ACM Gordon Bell Prize to a team of researchers who used four major supercomputers – inclu Read more…

Gordon Bell Nominee Used LLMs, HPC, Cerebras CS-2 to Predict Covid Variants

November 17, 2022

Large language models (LLMs) have taken the tech world by storm over the past couple of years, dominating headlines with their ability to generate convincing hu Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

AMD Thrives in Servers amid Intel Restructuring, Layoffs

November 12, 2022

Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel... Read more…

JPMorgan Chase Bets Big on Quantum Computing

October 12, 2022

Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Leading Solution Providers

Contributors

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…

Intel Is Opening up Its Chip Factories to Academia

October 6, 2022

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

AMD Previews 400 Gig Adaptive SmartNIC SOC at Hot Chips

August 24, 2022

Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12 Chiplets

November 10, 2022

AMD’s fourth-generation Epyc processor line has arrived, starting with the “general-purpose” architecture, called “Genoa,” the successor to third-gen Eypc Milan, which debuted in March of last year. At a launch event held today in San Francisco, AMD announced the general availability of the latest Epyc CPUs with up to 96 TSMC 5nm Zen 4 cores... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire