Petaflop In a Box

By Gary Johnson

June 6, 2012

As we move down the road toward exascale computing and engage in discussion of zettascale, one issue becomes increasingly obvious: we are leaving a large part of the HPC community behind. Most engineers and scientists compute, at best, at the terascale level, and these are the people using HPC to enhance our economic competitiveness. In addition to pushing the peak of HPC higher, should we also take steps to broaden its base and bring more of the community along with us? Could broad deployment of compact, power efficient petascale computers help accomplish this?

There has been, and continues to be, lots of discussion about exascale computing. What are the applications drivers for exascale computing? Is power the problem, or is it not the problem? When will we get to exascale – in 2018, 2020, or later? What is the plan for the US Department of Energy’s exascale computing program? Beyond that, zettascale computing is also in play. Will we never get there, or will it happen?

Amidst all of this controversy, there does seem to be a general consensus about the technical barriers to exascale, in particular:

  • Power consumption
  • Data movement
  • Hardware and Software Resiliency
  • Performance-oriented runtime systems software
  • Exposing and exploiting parallelism

Of these barriers, power consumption is a current issue that is exacerbated by moving to exascale. Arguably, the other barriers are more intrinsically exascale ones. Also, note that there are substantial software development requirements for dealing with these other exascale barriers. So, power consumption is a separable issue and may be dealt with at petascale, while leaving the intrinsic exascale barriers to be handled as such.

Despite what one reads in press releases, most scientists and engineers don’t compute at the petascale. Although our most powerful supercomputers are available for industrial use, only a very small fraction of the available time actually goes to industrial applications. A problem that surfaces in science circles more often than one might expect is the shortage of high-end cycles available for day-to-day work, rather than “hero runs” on petascale supercomputers. Everyday science and engineering is carried out largely on computers ranging from notebooks, operating at gigaflops, up through server racks, operating at teraflops. So, since most scientists and engineers compute at the terascale and below, their transition to petascale may be challenging , especially for those running legacy applications on legacy hardware.

Is there a way to help our scientists and engineers get to petascale sooner, while still travelling in the direction of exascale? We’re already computing (on a limited basis) at the petascale and if we extrapolate the historical trend, by about 2016 the bottom computer on the TOP500 list will be operating at a petaflop.

At first glance, that may not look so bad. We can just wait until 2016 and things will take care of themselves. The problem is that the majority of science and engineering is done below the level of that 500th computer and will still be sub-petascale.

If, in addition to pursuing exascale, we spin out petascale boxes as soon as possible, and in large numbers, then we can promote the development of scalable software to move beyond terascale; make petascale computing widely accessible; and help make the transition of the broad science and engineering community to petascale smoother and quicker. Also, when exascale does arrive, it will be more broadly embraced and used.

Our highest-end computing systems are very large and consume lots of power. To reach exascale in any credible way, machine footprints will need to shrink and power consumption will need to come down. Last year, John Kelly from IBM suggested that a byproduct of success in building an exaflop computer would be a petaflop in 1/3 of a rack. If we assume that DOE’s target of 20 megawatts (MW) power consumption for an exascale system is achieved and that 1/3 of a rack is about one cubic meter, then a petaflop in a cubic meter box would consume about 20 kilowatts (kW).

Such a system would consume about as much power as 4 electric clothes dryers. If we wanted to purchase a dedicated off-grid power supply for a petaflop box, we could find one on the internet for about $5,000. (Then we could measure flops/gallon!) On the US electric grid, the average price of 1 kWh in 2011 was 11.20 cents. So, one could operate the system continuously for a year at a power cost of about $20,000. These may be oversimplifications, but you get the point.

So far, so good. Now all we need to do is get a petaflop into that one cubic meter box.

Currently, one Blue Gene/Q cabinet has a volume of just over three cubic meters, holds hardware with a theoretical peak performance of just over 200 teraflops, and typically consumes about 65 kW. So using this technology as an example, to get a petaflop in a cubic meter we’d need to reduce the volume and power consumption by a factor of three and increase performance by a factor of five.

While these factors may be challenging, they certainly don’t seem impossible to achieve. Getting to exascale will require this sort of accomplishment, and a lot more. So, if we focus on getting a petaflop in a box within the next decade or hopefully sooner, we’ll be well on the way to exaflops systems, but without the additional, intrinsic, exascale barriers mentioned previously.

So, one could think of our petaflop box as one node in a thousand-node exascale system. Also note that, because of the expense of data movement at exascale, applications algorithms will probably be designed to minimize that data movement. So, most of the number crunching in exascale computers will probably take place within a “petascale radius.”

These compact petaflop machines would be useful in their own right and could be deployed as a tools for science and industry. Such a deployment could help move a lot more applications scientists and engineers from terascale to petascale computing. Furthermore, these petaflop systems could be shared by multiple users so that more people would be exposed to (at least) teraflop computing.

Right now, both federal policy and computer industry plans seem to be focused on getting to exascale while expecting only a small number of systems to be built and deployed. Clearly, there are scientific, economic and national security applications that require exascale computing. There is also a global competition to get to exascale. So, there doesn’t seem to be much room for doubt about fully engaging in the race to exascale.

However, there may be ways to have our cake and eat it too. There is widespread concern about our economic competitiveness and a common belief that HPC will play major roles in moving our industries forward. So, how about a phased deployment of lots of petascale systems – starting now?

Suppose we undertook, as a matter of national policy, to deploy something like 1,000 petaflop boxes over the next decade. The target system specifications would be as discussed here. But the early prototype systems could be larger, more power consumptive and hosted at “friendly” sites, as they are now. As progress is made toward the design targets, systems can be more broadly dispersed to sites hosted by applications industries, universities and commercial computing service providers.

As the full-scale deployment is approached, the petaflop boxes could be connected into an exascale cloud. This would provide a distributed national resource of interconnected petascale systems, of various architectures, to support new science and renewed economic growth. The user community for this national resource would consist of all those who could make the case for using it effectively.

The cost to the end users would be the same as the cost of using our interstate highway system, namely zero. The cost to the nation would be about the cost of one exascale system. If you think the cost might be higher, drop the deployment size to, say, 500 petaflop boxes. That would still be a large cloud, if not quite exascale.

By the way, exascale systems and exascale clouds are not ideas in competition. The each have their place. It appears that we could get them both as we move forward to the exascale. Also, if there were an exascale cloud, it should include those exascale systems as very powerful nodes, thus becoming a multi-exascale cloud.

What is currently missing is an open, thoughtful and vigorous discussion of petaflop boxes and exascale clouds, a discussion that could serve as a basis for policy formulation. We’ve seen this discussion take place over the past several years, on a global scale, for exascale systems, so it could also happen for broad deployment of petaflop boxes.

Might the petaflop in a box and/or exascale cloud be worthy national objectives? If so, do we have the will to pursue them? Let us know what you think.

About the author

Gary M. Johnson is the founder of Computational Science Solutions, LLC, whose mission is to develop, advocate, and implement solutions for the global computational science and engineering community.

Dr. Johnson specializes in management of high performance computing, applied mathematics, and computational science research activities; advocacy, development, and management of high performance computing centers; development of national science and technology policy; and creation of education and research programs in computational engineering and science.

He has worked in Academia, Industry and Government. He has held full professorships at Colorado State University and George Mason University, been a researcher at United Technologies Research Center, and worked for the Department of Defense, NASA, and the Department of Energy.

He is a graduate of the U.S. Air Force Academy; holds advanced degrees from Caltech and the von Karman Institute; and has a Ph.D. in applied sciences from the University of Brussels.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This