Intel Releases Knights Corner ISA, Lays Groundwork for MIC Launch

By Michael Feldman

June 11, 2012

Intel has released a partial software stack for Knights Corner, the company’s first commercial chip based on its Many Integrated Core (MIC) architecture. Also released were a number of documents describing the processor’s micro-architecture, including the Knights Corner Instruction Set (ISA) Manual, which will help toolmakers and application developers build software for the upcoming chip. The newly released information was described in a couple of blog posts last week by James Reinders, Intel’s chief evangelist and director of marketing for the company’s software development portfolio.

Up until now, Intel had not shared this software or documentation with anyone outside of its partner network. That posed something of a problem for third-party developers who don’t have that relationship with the Intel, but are looking to get MIC software products out the door in time for the upcoming Knights Corner launch. That chip is expected to go into production sometime in late 2012 or early 2013. Giving this first MIC product a running start is crucial, since it going to be competing against a GPU computing ecosystem with a five-year head start and an already-established product portfolio.

The newly released software from Intel includes source modifications for Linux, the GCC compiler and the GDB debugger, as well as new MIC drivers, which, together, will allow developers to build a Linux OS kernel capable of running on the manycore coprocessor. In this case, that applies to the current Knights Ferry prototype hardware, which is currently being used as a development platform at a number of sites, as well as the future Knights Corner chips.

Embedding an operating system on a coprocessor might seem a bit exotic since usually the host CPU, alone, runs the OS. But since the MIC architecture is essentially a variant of a Pentium CPU, it’s quite capable of acting as its own host. That will allow the Knights Corner to behave as a peer to the CPU, rather than just its slave. How that gets used in practice is still up in the air, but it would certainly make for a more flexible development environment, inasmuch as entire Linux apps could be launched and controlled locally on the MIC chip.

Even though this software is now public, the mods still have to work their way into the various Linux, GCC and GDB distributions, which could take awhile. In the meantime, anyone with a Knights Ferry test setup or simulator can pick up the new code on Intel’s MIC software resource page and have at it.

It’s important to note that the current set of mods delivered last week does not include MIC application support, which would have to encompass GCC and GDB support for the Knight Corner vector instructions. (The Linux kernel running on the coprocessor has no need for vector instructions.) That means for the time being, developers will still have to rely on Intel’s own compilers (or a CAPS enterprise compiler that is hooked into the Intel MIC back-end) if they want to build Knights Ferry or Knights Corner applications.

Also left out is compiler support for any coprocessor offload directives (text that can be inserted into high-level source that tells the compiler to execute specific code on the accelerator). Intel has not endorsed OpenACC, the budding accelerator directives standard backed by NVIDIA and some of its partners (PGI, CAPS enterprise, and Cray). Instead it has invented its own offload technology, known as LEO (Language Extensions for Offload), which users of the Intel compiler can tap into to offload chunks of their application onto the MIC hardware.

LEO is a less restrictive and more generalized set of offload directives than OpenACC since its allows the programmer to offload virtually any function or even a whole application to the MIC hardware. Remember that MIC is based on the Pentium, an older Intel architecture chosen for its simpler design, which is more suitable for a manycore throughput processor. Although the individual cores are relatively slow, they have almost all the functional capabilities of Xeon cores. Thus MIC can behave as a general-purpose CPU, albeit one with limited single-thread performance and smaller memory.

In any case, LEO will likely never become a public standard on its own. The end game for Intel is to get its capabilities incorporated into OpenMP’s future extension for accelerator directives. That effort will somehow have to blend the more GPU-oriented OpenACC standard with the CPU-oriented LEO model and come up with a platform-independent standard that can be applied across all types of accelerators.

Although the MIC software stack that Intel donated last week didn’t do much for application developers, the documentation that was made public should help them, at least indirectly. In addition to the Knights Corner ISA manual, the chip maker also provided the ABI (Application Binary Interface) and Performance Monitoring Unit documents. With this documentation in hand, software tool makers now have the information needed to build their own MIC compilers, libraries and other developer gadgets like debuggers and simulators. All the docs are available for download on the MIC resources page mentioned above.

The ISA and the ABI documents are more like addendums to the standard IA versions since MIC itself is just an x86 variant. MIC, though, overlays 64-bit processing, extra wide vector instructions, and a manycore design on top of the original Pentium architecture, which makes it a unique IA64 processor family.

Not surprisingly, most of the ISA doc focuses on the 512-bit wide vector instructions, along with all the fancy vector masking and shifting that turns the new chip into a SIMD powerhouse. MIC’s vector width is twice that of AVX (256 bits), the SIMD instruction set in the latest Intel Sandy Bridge and AMD Bulldozer CPUs. AVX, in turn, doubled the 128-bit wide vectors available in the previous SSE vector units.

Although the ISA is intended to grease the wheels for third-party MIC software tools, the information can also be used by application developers who are looking to access MIC instruction directly via intrinsics (assembly instructions that can be inserted into high level source code). With the intrinsics, bare-metal programmers can tap directly into the hardware to eke out maximum performance.

Now that some of the software and supporting docs are in the public domain, Intel will be able to work more openly with MIC developers and third-party toolmakers. All of this should help to jumpstart the ecosystem in preparation for the upcoming Knights Corner launch, which is only about half a year away. At the International Supercomputing Conference (ISC’12) next week in Germany, we should get a much better sense of how far along Intel is with its MIC rollout.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This