Intel Releases Knights Corner ISA, Lays Groundwork for MIC Launch

By Michael Feldman

June 11, 2012

Intel has released a partial software stack for Knights Corner, the company’s first commercial chip based on its Many Integrated Core (MIC) architecture. Also released were a number of documents describing the processor’s micro-architecture, including the Knights Corner Instruction Set (ISA) Manual, which will help toolmakers and application developers build software for the upcoming chip. The newly released information was described in a couple of blog posts last week by James Reinders, Intel’s chief evangelist and director of marketing for the company’s software development portfolio.

Up until now, Intel had not shared this software or documentation with anyone outside of its partner network. That posed something of a problem for third-party developers who don’t have that relationship with the Intel, but are looking to get MIC software products out the door in time for the upcoming Knights Corner launch. That chip is expected to go into production sometime in late 2012 or early 2013. Giving this first MIC product a running start is crucial, since it going to be competing against a GPU computing ecosystem with a five-year head start and an already-established product portfolio.

The newly released software from Intel includes source modifications for Linux, the GCC compiler and the GDB debugger, as well as new MIC drivers, which, together, will allow developers to build a Linux OS kernel capable of running on the manycore coprocessor. In this case, that applies to the current Knights Ferry prototype hardware, which is currently being used as a development platform at a number of sites, as well as the future Knights Corner chips.

Embedding an operating system on a coprocessor might seem a bit exotic since usually the host CPU, alone, runs the OS. But since the MIC architecture is essentially a variant of a Pentium CPU, it’s quite capable of acting as its own host. That will allow the Knights Corner to behave as a peer to the CPU, rather than just its slave. How that gets used in practice is still up in the air, but it would certainly make for a more flexible development environment, inasmuch as entire Linux apps could be launched and controlled locally on the MIC chip.

Even though this software is now public, the mods still have to work their way into the various Linux, GCC and GDB distributions, which could take awhile. In the meantime, anyone with a Knights Ferry test setup or simulator can pick up the new code on Intel’s MIC software resource page and have at it.

It’s important to note that the current set of mods delivered last week does not include MIC application support, which would have to encompass GCC and GDB support for the Knight Corner vector instructions. (The Linux kernel running on the coprocessor has no need for vector instructions.) That means for the time being, developers will still have to rely on Intel’s own compilers (or a CAPS enterprise compiler that is hooked into the Intel MIC back-end) if they want to build Knights Ferry or Knights Corner applications.

Also left out is compiler support for any coprocessor offload directives (text that can be inserted into high-level source that tells the compiler to execute specific code on the accelerator). Intel has not endorsed OpenACC, the budding accelerator directives standard backed by NVIDIA and some of its partners (PGI, CAPS enterprise, and Cray). Instead it has invented its own offload technology, known as LEO (Language Extensions for Offload), which users of the Intel compiler can tap into to offload chunks of their application onto the MIC hardware.

LEO is a less restrictive and more generalized set of offload directives than OpenACC since its allows the programmer to offload virtually any function or even a whole application to the MIC hardware. Remember that MIC is based on the Pentium, an older Intel architecture chosen for its simpler design, which is more suitable for a manycore throughput processor. Although the individual cores are relatively slow, they have almost all the functional capabilities of Xeon cores. Thus MIC can behave as a general-purpose CPU, albeit one with limited single-thread performance and smaller memory.

In any case, LEO will likely never become a public standard on its own. The end game for Intel is to get its capabilities incorporated into OpenMP’s future extension for accelerator directives. That effort will somehow have to blend the more GPU-oriented OpenACC standard with the CPU-oriented LEO model and come up with a platform-independent standard that can be applied across all types of accelerators.

Although the MIC software stack that Intel donated last week didn’t do much for application developers, the documentation that was made public should help them, at least indirectly. In addition to the Knights Corner ISA manual, the chip maker also provided the ABI (Application Binary Interface) and Performance Monitoring Unit documents. With this documentation in hand, software tool makers now have the information needed to build their own MIC compilers, libraries and other developer gadgets like debuggers and simulators. All the docs are available for download on the MIC resources page mentioned above.

The ISA and the ABI documents are more like addendums to the standard IA versions since MIC itself is just an x86 variant. MIC, though, overlays 64-bit processing, extra wide vector instructions, and a manycore design on top of the original Pentium architecture, which makes it a unique IA64 processor family.

Not surprisingly, most of the ISA doc focuses on the 512-bit wide vector instructions, along with all the fancy vector masking and shifting that turns the new chip into a SIMD powerhouse. MIC’s vector width is twice that of AVX (256 bits), the SIMD instruction set in the latest Intel Sandy Bridge and AMD Bulldozer CPUs. AVX, in turn, doubled the 128-bit wide vectors available in the previous SSE vector units.

Although the ISA is intended to grease the wheels for third-party MIC software tools, the information can also be used by application developers who are looking to access MIC instruction directly via intrinsics (assembly instructions that can be inserted into high level source code). With the intrinsics, bare-metal programmers can tap directly into the hardware to eke out maximum performance.

Now that some of the software and supporting docs are in the public domain, Intel will be able to work more openly with MIC developers and third-party toolmakers. All of this should help to jumpstart the ecosystem in preparation for the upcoming Knights Corner launch, which is only about half a year away. At the International Supercomputing Conference (ISC’12) next week in Germany, we should get a much better sense of how far along Intel is with its MIC rollout.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

NSF Issues $60M RFP for “Towards a Leadership-Class” System

May 16, 2017

In case you missed it, the National Science Foundation issued the request for proposals (RFP) for the next ‘Towards a Leadership-Class Computing Facility – Read more…

By John Russell

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Microsoft Azure Will Debut Pascal GPU Instances This Year

May 8, 2017

As Nvidia's GPU Technology Conference gets underway in San Jose, Calif., Microsoft today revealed plans to add Pascal-generation GPU horsepower to its Azure clo Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This