Liquid cooling: decisions, types, approaches.

By Nicole Hemsoth

June 11, 2012

Despite world economic turmoil of the recent severe European crisis, the demand for high performance computing services stays on the rise. Companies and institutions progressively see computational power as a source of competitive advantage and in many cases as the only optimal solution for many scientific and business challenges, from high energy physics to big data. This trend has brought an unprecedented rise in demand for high computational power. This is posing some sound energy and thermal management challenges.

The energy problem in data centres is two sided. On the one hand, data centres have a problem of energy consumption, which enlarges bills also in countries where the cost of energy is relatively low. On the other hand, there is a problem of peak power demand, so, in other words, a problem of availability.  Megawatt installations are not so uncommon anymore, meaning that a request of power similar to the one that has traditionally belonged to the heavy industry sector is becoming almost the norm, in some occasions requiring special arrangement for power systems and electrical lines.

Thermal management is exacerbated by another trend: density. In many cases, rack powers of 30 kW are well beyond what legacy air cooling can handle. In the modern HPC, the high powers in play often leave few options but resorting to some form of water cooling.

Liquid cooling has many advantages, which derive from the much higher heat capacity per unit volume of water compared to air (we are talking about a factor of 3500 times higher). Liquid cooling implies higher densities, energy savings and the possibility to reuse the thermal energy that the water extracts from the IT equipment. Some additional advantages can be found in terms of lower noise levels, less vibrations and close control of electronics temperatures.

The best approach in deciding what type of cooling to implement is to consider alternatives in relation to technical and business needs, the type of air and liquid cooling system available within budget and a series of variables that play an important role in the decision: the desired density versus space availability, new construction versus existing construction, the proximity to natural sources of cold water like rivers and lakes, the local climate, the cost of energy and the thermal energy recovery possibilities.

For instance, high performance high density requirements may leave little choice than liquid cooling to efficiently manage the extraction of the heat from the supercomputers. While, if the data centre has an economizer and the climate is best suited to air-side economizers (mild temperatures and moderate humidity) than an air cooled DC may have more sense. 

Deciding the cooling system may also take in consideration the type of water cooling to be installed. There are solutions that simply create an extension of the existing liquid-cooling loop closer to the IT equipment like in the case of liquid cooled racks (liquid cooled door, closed-liquid rack). In other solutions, in-row units are embedded in rows of data center cabinets, providing localized air distribution and management. Alternatively, overhead cooling suspends from the ceiling complements a hot aisle/cold aisle arrangement. As hot air rises from the hot aisle, the overhead cooler captures it, conditions it, and releases it back to the cold aisle

More effective cooling can be reached when the liquid is brought in the near proximity of the electronic components like in the case of submerged cooling, spray cooling or direct (embedded) cooling.

In the first case, the electronic components are immerged in oil and water which is kept in circulation through small pumps. In the second, the water is vaporized and tiny drops of water fall on the electronics evaporating immediately and taking away a lot of heat. In the latter, water is taken through metal plates or micro pipes to direct contact with processors, memory and other components.

Another distinction is normally made between hot and cold liquid cooling. The definition of hot liquid cooling can be vary. In Eurotech we think that hot liquid cooling means the technology capable of using a liquid (e.g. water) with a temperature above the server room temperature.  We also accept that, pushing the bar up in terms of max coolant temperature, hot liquid cooling may take place when the water is hot enough to allow thermal energy reuse.

In any kind of liquid cooling, one aspect that needs careful attention is the risk of leaking. This is an issue because the electronic components are upgraded on a routine basis resulting in many systems with the need to disconnect and reconnect the liquid carrying lines. Also, there is the need to consider whether cooling with water brings on all of its potential. For instance, resorting to chillers to cool the water will allow density, but limit the energy savings that are maximized with hot water cooling technologies, thanks to air conditioning avoidance. However, it is no news that new powerful processors with TDP of 150W may require coolant temperatures lower that the ones guaranteed by free cooling in warm climates. An additional downside of increasing water temperature may be the higher operating temperature of electronic components.  This risk needs to be balanced by the advantages coming from levelling temperatures on the mother board and avoiding hot spots at data center level.

Eurotech approach

Eurotech has developed liquid cooling systems for more than 7 years and it was the first in the market to offer a hot liquid cooling with high serviceability. Eurotech Aurora supercomputers have been liquid cooled since product one and day one, allowing for precious competences and know how to be waived within the fabric of the organization. This experience helped the development of our idea of liquid cooling.

Eurotech liquid cooling is:

Hot. That means using hot water of 50+ °C, balancing customer needs, density targets, data center temperature and site temperature/humidity profiles. Eurotech delivers to customers the liquid cooling solution that allows utilizing the water at the maximum temperature possible across the year. 

Direct.  The cooling takes place inside the rack, where aluminum cold plates are put in direct contact with the components, allowing to maximize the heat transfer and heat extraction efficacy. The good side effect is to level out temperatures on board avoiding hot spots.

Green. Eurotech aims to utilize free coolers (liquid to air heat exchangers) in any climate zone. Solutions are designed to avoid air conditioning, while maintaining the highest density possible, and to exploit, if required and wherever it is possible, thermal energy recovery.

Comprehensive. The “cold plates” cool processors, memory, FPGAs, power supply, switches and any other heat generating component, including GPUs or other accelerators. This means that there is not a single heat source in the rack that is not cooled, preventing hot spots at DC level.

Serviceable. Eurotech Aurora HPC boards are hot swappable despite being water cooled thanks to connectors that seal instantaneously when a node card is extracted for maintenance or management purposes. The node cards are blades that a single person can easily manage.

Safe. Eurotech understand that it is imperative to keep water away from electronics. For this reason we have spent several years to develop a system that doesn’t leak and to mature those competencies that guide our customers into the correct and trouble free maintenance of the liquid cooling infrastructure.

Indeed, one of the Eurotech focus is on correct liquid cooling operations and maintenance, which is fundamental to preserve the system safety and integrity and keep performances at top levels.

“The maintenance of liquid cooling systems is not a daunting task” says Paul Arts, Eurotech technical director “but it requires following guidelines many of them are conveniently collected by Ashrae. At Eurotech, we assist our customers in approaching hot water cooling, designing the systems and training the customers in operations and maintenance. If have to spare my 2 cents, areas I would focus my attention are water quality, anti-corrosion precautions, flow rate and dew point temperatures”

Eurotech has experienced that correct operations maximize the life not only of the cooling system but also of the electronic components, rounding up the advantages of using hot water cooling. Eurotech believes in liquid cooling as an approachable and concrete solution for facing energy and thermal issues, especially in those contexts that are climatically unfavourable.

http://www.eurotech.com/en/hpc/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This