Liquid cooling: decisions, types, approaches.

By Nicole Hemsoth

June 11, 2012

Despite world economic turmoil of the recent severe European crisis, the demand for high performance computing services stays on the rise. Companies and institutions progressively see computational power as a source of competitive advantage and in many cases as the only optimal solution for many scientific and business challenges, from high energy physics to big data. This trend has brought an unprecedented rise in demand for high computational power. This is posing some sound energy and thermal management challenges.

The energy problem in data centres is two sided. On the one hand, data centres have a problem of energy consumption, which enlarges bills also in countries where the cost of energy is relatively low. On the other hand, there is a problem of peak power demand, so, in other words, a problem of availability.  Megawatt installations are not so uncommon anymore, meaning that a request of power similar to the one that has traditionally belonged to the heavy industry sector is becoming almost the norm, in some occasions requiring special arrangement for power systems and electrical lines.

Thermal management is exacerbated by another trend: density. In many cases, rack powers of 30 kW are well beyond what legacy air cooling can handle. In the modern HPC, the high powers in play often leave few options but resorting to some form of water cooling.

Liquid cooling has many advantages, which derive from the much higher heat capacity per unit volume of water compared to air (we are talking about a factor of 3500 times higher). Liquid cooling implies higher densities, energy savings and the possibility to reuse the thermal energy that the water extracts from the IT equipment. Some additional advantages can be found in terms of lower noise levels, less vibrations and close control of electronics temperatures.

The best approach in deciding what type of cooling to implement is to consider alternatives in relation to technical and business needs, the type of air and liquid cooling system available within budget and a series of variables that play an important role in the decision: the desired density versus space availability, new construction versus existing construction, the proximity to natural sources of cold water like rivers and lakes, the local climate, the cost of energy and the thermal energy recovery possibilities.

For instance, high performance high density requirements may leave little choice than liquid cooling to efficiently manage the extraction of the heat from the supercomputers. While, if the data centre has an economizer and the climate is best suited to air-side economizers (mild temperatures and moderate humidity) than an air cooled DC may have more sense. 

Deciding the cooling system may also take in consideration the type of water cooling to be installed. There are solutions that simply create an extension of the existing liquid-cooling loop closer to the IT equipment like in the case of liquid cooled racks (liquid cooled door, closed-liquid rack). In other solutions, in-row units are embedded in rows of data center cabinets, providing localized air distribution and management. Alternatively, overhead cooling suspends from the ceiling complements a hot aisle/cold aisle arrangement. As hot air rises from the hot aisle, the overhead cooler captures it, conditions it, and releases it back to the cold aisle

More effective cooling can be reached when the liquid is brought in the near proximity of the electronic components like in the case of submerged cooling, spray cooling or direct (embedded) cooling.

In the first case, the electronic components are immerged in oil and water which is kept in circulation through small pumps. In the second, the water is vaporized and tiny drops of water fall on the electronics evaporating immediately and taking away a lot of heat. In the latter, water is taken through metal plates or micro pipes to direct contact with processors, memory and other components.

Another distinction is normally made between hot and cold liquid cooling. The definition of hot liquid cooling can be vary. In Eurotech we think that hot liquid cooling means the technology capable of using a liquid (e.g. water) with a temperature above the server room temperature.  We also accept that, pushing the bar up in terms of max coolant temperature, hot liquid cooling may take place when the water is hot enough to allow thermal energy reuse.

In any kind of liquid cooling, one aspect that needs careful attention is the risk of leaking. This is an issue because the electronic components are upgraded on a routine basis resulting in many systems with the need to disconnect and reconnect the liquid carrying lines. Also, there is the need to consider whether cooling with water brings on all of its potential. For instance, resorting to chillers to cool the water will allow density, but limit the energy savings that are maximized with hot water cooling technologies, thanks to air conditioning avoidance. However, it is no news that new powerful processors with TDP of 150W may require coolant temperatures lower that the ones guaranteed by free cooling in warm climates. An additional downside of increasing water temperature may be the higher operating temperature of electronic components.  This risk needs to be balanced by the advantages coming from levelling temperatures on the mother board and avoiding hot spots at data center level.

Eurotech approach

Eurotech has developed liquid cooling systems for more than 7 years and it was the first in the market to offer a hot liquid cooling with high serviceability. Eurotech Aurora supercomputers have been liquid cooled since product one and day one, allowing for precious competences and know how to be waived within the fabric of the organization. This experience helped the development of our idea of liquid cooling.

Eurotech liquid cooling is:

Hot. That means using hot water of 50+ °C, balancing customer needs, density targets, data center temperature and site temperature/humidity profiles. Eurotech delivers to customers the liquid cooling solution that allows utilizing the water at the maximum temperature possible across the year. 

Direct.  The cooling takes place inside the rack, where aluminum cold plates are put in direct contact with the components, allowing to maximize the heat transfer and heat extraction efficacy. The good side effect is to level out temperatures on board avoiding hot spots.

Green. Eurotech aims to utilize free coolers (liquid to air heat exchangers) in any climate zone. Solutions are designed to avoid air conditioning, while maintaining the highest density possible, and to exploit, if required and wherever it is possible, thermal energy recovery.

Comprehensive. The “cold plates” cool processors, memory, FPGAs, power supply, switches and any other heat generating component, including GPUs or other accelerators. This means that there is not a single heat source in the rack that is not cooled, preventing hot spots at DC level.

Serviceable. Eurotech Aurora HPC boards are hot swappable despite being water cooled thanks to connectors that seal instantaneously when a node card is extracted for maintenance or management purposes. The node cards are blades that a single person can easily manage.

Safe. Eurotech understand that it is imperative to keep water away from electronics. For this reason we have spent several years to develop a system that doesn’t leak and to mature those competencies that guide our customers into the correct and trouble free maintenance of the liquid cooling infrastructure.

Indeed, one of the Eurotech focus is on correct liquid cooling operations and maintenance, which is fundamental to preserve the system safety and integrity and keep performances at top levels.

“The maintenance of liquid cooling systems is not a daunting task” says Paul Arts, Eurotech technical director “but it requires following guidelines many of them are conveniently collected by Ashrae. At Eurotech, we assist our customers in approaching hot water cooling, designing the systems and training the customers in operations and maintenance. If have to spare my 2 cents, areas I would focus my attention are water quality, anti-corrosion precautions, flow rate and dew point temperatures”

Eurotech has experienced that correct operations maximize the life not only of the cooling system but also of the electronic components, rounding up the advantages of using hot water cooling. Eurotech believes in liquid cooling as an approachable and concrete solution for facing energy and thermal issues, especially in those contexts that are climatically unfavourable.

http://www.eurotech.com/en/hpc/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

NSF Approves Bridges Phase 2 Upgrade for Broader Research Use

January 12, 2017

The recently completed phase 2 upgrade of the Bridges supercomputer at the Pittsburgh Supercomputing Center (PSC) has been approved by the National Science Foundation (NSF) making it now available for research allocations to the national scientific community, according to an announcement posted this week on the XSEDE web site. Read more…

By John Russell

Clemson Software Optimizes Big Data Transfers

January 11, 2017

Data-intensive science is not a new phenomenon as the high-energy physics and astrophysics communities can certainly attest, but today more and more scientists are facing steep data and throughput challenges fueled by soaring data volumes and the demands of global-scale collaboration. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

FPGA-Based Genome Processor Bundles Storage

January 6, 2017

Bio-processor developer Edico Genome is collaborating with storage specialist Dell EMC to bundle computing and storage for analyzing gene-sequencing data. Read more…

By George Leopold

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Fast Rewind: 2016 Was a Wild Ride for HPC

December 23, 2016

Some years quietly sneak by – 2016 not so much. It’s safe to say there are always forces reshaping the HPC landscape but this year’s bunch seemed like a noisy lot. Among the noisemakers: TaihuLight, DGX-1/Pascal, Dell EMC & HPE-SGI et al., KNL to market, OPA-IB chest thumping, Fujitsu-ARM, new U.S. President-elect, BREXIT, JR’s Intel Exit, Exascale (whatever that means now), NCSA@30, whither NSCI, Deep Learning mania, HPC identity crisis…You get the picture. Read more…

By John Russell

AWI Uses New Cray Cluster for Earth Sciences and Bioinformatics

December 22, 2016

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), headquartered in Bremerhaven, Germany, is one of the country's premier research institutes within the Helmholtz Association of German Research Centres, and is an internationally respected center of expertise for polar and marine research. In November 2015, AWI awarded Cray a contract to install a cluster supercomputer that would help the institute accelerate time to discovery. Now the effort is starting to pay off. Read more…

By Linda Barney

Addison Snell: The ‘Wild West’ of HPC Disaggregation

December 16, 2016

We caught up with Addison Snell, CEO of HPC industry watcher Intersect360, at SC16 last month, and Snell had his expected, extensive list of insights into trends driving advanced-scale technology in both the commercial and research sectors. Read more…

By Doug Black

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. Read more…

By John Russell

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Deep Learning Paves Way for Better Diagnostics

September 19, 2016

Stanford researchers are leveraging GPU-based machines in the Amazon EC2 cloud to run deep learning workloads with the goal of improving diagnostics for a chronic eye disease, called diabetic retinopathy. The disease is a complication of diabetes that can lead to blindness if blood sugar is poorly controlled. It affects about 45 percent of diabetics and 100 million people worldwide, many in developing nations. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This