Liquid cooling: decisions, types, approaches.

By Nicole Hemsoth

June 11, 2012

Despite world economic turmoil of the recent severe European crisis, the demand for high performance computing services stays on the rise. Companies and institutions progressively see computational power as a source of competitive advantage and in many cases as the only optimal solution for many scientific and business challenges, from high energy physics to big data. This trend has brought an unprecedented rise in demand for high computational power. This is posing some sound energy and thermal management challenges.

The energy problem in data centres is two sided. On the one hand, data centres have a problem of energy consumption, which enlarges bills also in countries where the cost of energy is relatively low. On the other hand, there is a problem of peak power demand, so, in other words, a problem of availability.  Megawatt installations are not so uncommon anymore, meaning that a request of power similar to the one that has traditionally belonged to the heavy industry sector is becoming almost the norm, in some occasions requiring special arrangement for power systems and electrical lines.

Thermal management is exacerbated by another trend: density. In many cases, rack powers of 30 kW are well beyond what legacy air cooling can handle. In the modern HPC, the high powers in play often leave few options but resorting to some form of water cooling.

Liquid cooling has many advantages, which derive from the much higher heat capacity per unit volume of water compared to air (we are talking about a factor of 3500 times higher). Liquid cooling implies higher densities, energy savings and the possibility to reuse the thermal energy that the water extracts from the IT equipment. Some additional advantages can be found in terms of lower noise levels, less vibrations and close control of electronics temperatures.

The best approach in deciding what type of cooling to implement is to consider alternatives in relation to technical and business needs, the type of air and liquid cooling system available within budget and a series of variables that play an important role in the decision: the desired density versus space availability, new construction versus existing construction, the proximity to natural sources of cold water like rivers and lakes, the local climate, the cost of energy and the thermal energy recovery possibilities.

For instance, high performance high density requirements may leave little choice than liquid cooling to efficiently manage the extraction of the heat from the supercomputers. While, if the data centre has an economizer and the climate is best suited to air-side economizers (mild temperatures and moderate humidity) than an air cooled DC may have more sense. 

Deciding the cooling system may also take in consideration the type of water cooling to be installed. There are solutions that simply create an extension of the existing liquid-cooling loop closer to the IT equipment like in the case of liquid cooled racks (liquid cooled door, closed-liquid rack). In other solutions, in-row units are embedded in rows of data center cabinets, providing localized air distribution and management. Alternatively, overhead cooling suspends from the ceiling complements a hot aisle/cold aisle arrangement. As hot air rises from the hot aisle, the overhead cooler captures it, conditions it, and releases it back to the cold aisle

More effective cooling can be reached when the liquid is brought in the near proximity of the electronic components like in the case of submerged cooling, spray cooling or direct (embedded) cooling.

In the first case, the electronic components are immerged in oil and water which is kept in circulation through small pumps. In the second, the water is vaporized and tiny drops of water fall on the electronics evaporating immediately and taking away a lot of heat. In the latter, water is taken through metal plates or micro pipes to direct contact with processors, memory and other components.

Another distinction is normally made between hot and cold liquid cooling. The definition of hot liquid cooling can be vary. In Eurotech we think that hot liquid cooling means the technology capable of using a liquid (e.g. water) with a temperature above the server room temperature.  We also accept that, pushing the bar up in terms of max coolant temperature, hot liquid cooling may take place when the water is hot enough to allow thermal energy reuse.

In any kind of liquid cooling, one aspect that needs careful attention is the risk of leaking. This is an issue because the electronic components are upgraded on a routine basis resulting in many systems with the need to disconnect and reconnect the liquid carrying lines. Also, there is the need to consider whether cooling with water brings on all of its potential. For instance, resorting to chillers to cool the water will allow density, but limit the energy savings that are maximized with hot water cooling technologies, thanks to air conditioning avoidance. However, it is no news that new powerful processors with TDP of 150W may require coolant temperatures lower that the ones guaranteed by free cooling in warm climates. An additional downside of increasing water temperature may be the higher operating temperature of electronic components.  This risk needs to be balanced by the advantages coming from levelling temperatures on the mother board and avoiding hot spots at data center level.

Eurotech approach

Eurotech has developed liquid cooling systems for more than 7 years and it was the first in the market to offer a hot liquid cooling with high serviceability. Eurotech Aurora supercomputers have been liquid cooled since product one and day one, allowing for precious competences and know how to be waived within the fabric of the organization. This experience helped the development of our idea of liquid cooling.

Eurotech liquid cooling is:

Hot. That means using hot water of 50+ °C, balancing customer needs, density targets, data center temperature and site temperature/humidity profiles. Eurotech delivers to customers the liquid cooling solution that allows utilizing the water at the maximum temperature possible across the year. 

Direct.  The cooling takes place inside the rack, where aluminum cold plates are put in direct contact with the components, allowing to maximize the heat transfer and heat extraction efficacy. The good side effect is to level out temperatures on board avoiding hot spots.

Green. Eurotech aims to utilize free coolers (liquid to air heat exchangers) in any climate zone. Solutions are designed to avoid air conditioning, while maintaining the highest density possible, and to exploit, if required and wherever it is possible, thermal energy recovery.

Comprehensive. The “cold plates” cool processors, memory, FPGAs, power supply, switches and any other heat generating component, including GPUs or other accelerators. This means that there is not a single heat source in the rack that is not cooled, preventing hot spots at DC level.

Serviceable. Eurotech Aurora HPC boards are hot swappable despite being water cooled thanks to connectors that seal instantaneously when a node card is extracted for maintenance or management purposes. The node cards are blades that a single person can easily manage.

Safe. Eurotech understand that it is imperative to keep water away from electronics. For this reason we have spent several years to develop a system that doesn’t leak and to mature those competencies that guide our customers into the correct and trouble free maintenance of the liquid cooling infrastructure.

Indeed, one of the Eurotech focus is on correct liquid cooling operations and maintenance, which is fundamental to preserve the system safety and integrity and keep performances at top levels.

“The maintenance of liquid cooling systems is not a daunting task” says Paul Arts, Eurotech technical director “but it requires following guidelines many of them are conveniently collected by Ashrae. At Eurotech, we assist our customers in approaching hot water cooling, designing the systems and training the customers in operations and maintenance. If have to spare my 2 cents, areas I would focus my attention are water quality, anti-corrosion precautions, flow rate and dew point temperatures”

Eurotech has experienced that correct operations maximize the life not only of the cooling system but also of the electronic components, rounding up the advantages of using hot water cooling. Eurotech believes in liquid cooling as an approachable and concrete solution for facing energy and thermal issues, especially in those contexts that are climatically unfavourable.

http://www.eurotech.com/en/hpc/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENATE’s ambitious mission was to be a proving ground for near- Read more…

By John Russell

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is s Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

  • arrow
  • Click Here for More Headlines
  • arrow
Share This