Cray Expands Narrative on Blue Waters Supercomputer and Company’s New Storage Business

By Nicole Hemsoth

June 12, 2012

Two of Cray’s more notable achievements in 2011 — the contract win of the “Blue Waters” supercomputer re-bid and the addition of a high-performance storage line — are reaping dividends in 2012. In this interview with Barry Bolding, Cray’s vice president of storage and data management, HPCwire takes a behind-the-scenes look at that unusual procurement and the company’s subsequent move into the storage business.

HPCwire: How quickly did Cray need to respond when the Blue Waters procurement re-opened last year?

Barry Bolding: This opportunity was notable for the combination of its timeline, size and scope. Cray often needs to respond quickly and our manufacturing organization is optimized to produce large systems for customers. But the scope of the Blue Waters opportunity was big enough, and the timeframe was short enough, that we knew it would tax not only our own manufacturing, but our entire supply chain. The challenges included producing and delivering more than 270 Cray compute cabinets, a groundbreaking file system with 25 petabytes of storage and sustained aggregate performance of one terabyte per second, and fitting this into NCSA’s existing environment in a compressed timeframe.

HPCwire: What was the timeframe like?

Bolding: The NCSA request for vendors was issued in early August 2011, and by SC11 we were in contract, so this was a very compressed time to evaluate the architecture. We started delivering the first Cray system just after the contract was signed, and most of the hardware for an early science system was in transit by the end of the year.

HPCwire: Did you already have blueprint plans on hand that you could adapt?

Bolding: No, but we have processes in place and experience with building big systems. Our standard compute and storage products are all designed for high scalability. Cray’s blueprint is simply our single focus on HPC. We are optimized for the possibility of very large installations.

HPCwire: What’s the current status of the Blue Waters installation?

Bolding: In the first phase of the delivery, by early March 2012 we made a complete Cray system available for early science users. This Cray XE6 Early Science System has peak performance of more than one petaflop and two petabytes of high performance Cray Sonexion storage. That’s about 15 percent of the final system. The ESS is a standalone system with 48 cabinets that will be incorporated into the final Blue Waters system.

HPCwire: Who has access to the Early Science System?

Bolding: Initially, six research teams were awarded allocations through an NSF-led competition that started with more than two dozen teams. The research of the six teams focuses on topics ranging from supernovae to climate change to the molecular mechanism of HIV infection. Their progress in meeting preliminary goals has been good. In some cases, the Early Science System is already allowing researchers to do things they couldn’t do before. In May 2012, four more research teams were awarded time on the system. They are studying topics including severe weather, the life cycle of stars, and turbulent combustion.

HPCwire: What’s left to do on the Blue Waters deployment?

Bolding: A substantial portion of the hardware is now on site, so the delivery side is less of a major concern. Our current focus is on integration and performance scaling, including the software and the network. This will be largest Gemini network we’ve built. You always encounter new challenges when you build a system bigger than ever before, so we expect to see some new challenges.

HPCwire: Are you getting performance data yet on real-world codes?

Bolding: Users are already giving conference talks and publishing papers on their work using the Early Science System. The storage subsystem is performing and scaling very well. In the final configuration, there will be one terabyte per second of aggregate bandwidth. On the partial system, we’re seeing linear scaling to about 60 gigabytes per second today.

HPCwire: You’ve said that this is the largest supercomputer Cray was ever contracted to deliver. How was this assignment different from other big ones Cray’s tackled?

Bolding: Deploying our largest supercomputer ever and doing so at a site that hasn’t owned a Cray in recent years is a huge job. We often sell very large systems to existing customers that have started with moderate-sized systems, such as Los Alamos, Oak Ridge, and NERSC. The last time we installed a system of similar magnitude at a site that hadn’t had a Cray in a long time was the “Red Storm” system at Sandia. It’s been nine years since we did that.

Blue Waters will be one of the world’s highest sustained performance configurations on both the compute and storage sides. This is groundbreaking, even for Cray. The storage will be four times larger than on any prior Cray system. It’s no longer just about compute for Cray. World-leading compute and world-leading storage are now the one-two punch for our company.

HPCwire: What’s different about Sonexion storage?

Bolding: The Cray Sonexion storage product line was designed from the ground up for scalability. This is unlike any other Lustre file systems we’ve installed. We couldn’t have met the requirements for NCSA Blue Waters with any current technology other than Sonexion. I believe Sonexion has the best odds of achieving one terabyte per second sustained performance based on its highly scalable building-block architecture. Other vendors are aiming for similar milestone installations, but we see those architectures as less scalable than the Sonexion architecture.

It’s built for high scalability with Scalable Storage Units, or SSUs. Each time you add an SSU you add both bandwidth and capacity to the file system in a very balanced way. The switching and server infrastructure are integrated into the file system racks and cabinets themselves. This is done in the factory so it’s ready to run at the customer site.

This storage architecture also minimizes the switching and cabling needed to any compute module it’s attached to. More conventional architectures require external servers, more complex InfiniBand switching and each server would need many more spinning disks to match the performance of a single Sonexion SSU.

We see all this as adding costs and risks to the ability to scale storage productively. Another unique thing is that Sonexion is also designed as a datacenter-wide file system that connects not just to Cray supercomputers but to any others in the data center.

HPCwire: So do you plan to sell Sonexion products to sites that don’t have Cray supercomputers?

Bolding: Absolutely yes.

HPCwire: How have things been going for the Sonexion products in the marketplace? Has it been hard for HPC buyers to see Cray as a storage vendor?

Bolding: We’re traditionally viewed as an HPC compute company, and customers are still learning to view us as a storage company. But every time we install a new Sonexion system, the perception changes for that customer and that set of users. We’ve already done Sonexion installations in government, academia, and in the energy sector, and they’re all in heavy production mode.

To date, all of these are connected to Cray supercomputers, but we’re starting to sell to non-Cray HPC customers and this will help change current perceptions. Don’t forget that our predecessor, Cray Research, made some of the greatest storage innovations with SSDs and data migration. We work closely with our OEMs to ensure we are on the cutting edge from the perspective of software management, performance, and price-performance. While we’ve worked closely with a storage OEM on it, Sonexion is a Cray offering from the ground up. Our expertise includes Lustre scalability.

HPCwire: NCSA formed 25 domain-specific scientific teams two years before Cray entered the picture and has been working with them to prepare their codes for pursuing sustained petaflop performance on Blue Waters. Has Cray gotten directly involved with these teams?

Bolding: NCSA is the primary driver collaborating with the science teams. NCSA and NSF did highly value Cray’s deep experience with the apps. We have one of the most experienced applications teams in the world. We work with scientists all around the world and we have centers of excellence where we work closely with end-users to help scale up their codes. NCSA saw real value in this.

Today, our apps experts are working closely with NCSA science teams to scale their applications to meet performance expectations. Another Cray system has already enabled sustained petaflops performance on a different workload of five real-world codes. We believe that this demonstrates that Cray systems are more productive at scale than those of any other vendor.

NCSA-NSF users have a different set of very challenging applications, so it won’t be easy to achieve this breakthrough performance level. All applications are different and have all their own challenges. But Blue Waters is a groundbreaking supercomputer and we’re confident it will meet the expectations of NCSA and NSF by enabling users to achieve petascale performance on a range of codes.

HPCwire: Are the requirements of NSF scientific users different from those of DOE scientific users Cray serves?

Bolding: There is no single NSF or DOE user type. We’ve been selling into DOE for a number of years. Some systems, like “Jaguar,” support a small number of apps that are scaling high. NERSC has a much broader mandate and supports a larger number of applications. I think Blue Waters will have both, a broad user base from many scientific domains, and a broad range of scaling requirements and goals, on up to petascale.

The 25 science teams formed by NCSA represent more domains of science than are typical for a DOE site. A subset of Blue Waters users will be running at extreme scale, almost to the full size of the 11.5 petaflop system.

HPCwire: Blue Waters will also be available to industrial users through NCSA’s Private Sector Program. Do these users have any special storage or other requirements?

Bolding: NCSA has a very active private sector program that Cray has joined. We think it’s vital that systems like Blue Waters are leveraged for the good of the economy and American competitiveness. Cray is dedicated to both public-sector and private-sector computing.

Our M-series systems are designed primarily for the private sector. For their most advanced research and in other cases where they don’t have adequate HPC resources of their own, private-sector firms sometimes need access to much larger systems and to expertise in using them. That’s what NCSA’s private sector program is all about, and Cray is now part of this program.

HPCwire: What’s the overall significance of the Blue Waters project for Cray? How does it move you forward as an HPC vendor?

Bolding: NCSA is a flagship site for highlighting Cray as a scalable storage provider, and it’s a great launching point for us. We’ll deploy one of the largest, most capable storage systems in the world there. On the compute side, Blue Waters is the latest in a continuing series of the kinds of big challenges that Cray is organized to face. So, this is an important milestone for us. I don’t think any other company on the planet could deliver the sustained performance we’ll be delivering for Blue Waters in this challenging timeframe.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This