Cray Expands Narrative on Blue Waters Supercomputer and Company’s New Storage Business

By Nicole Hemsoth

June 12, 2012

Two of Cray’s more notable achievements in 2011 — the contract win of the “Blue Waters” supercomputer re-bid and the addition of a high-performance storage line — are reaping dividends in 2012. In this interview with Barry Bolding, Cray’s vice president of storage and data management, HPCwire takes a behind-the-scenes look at that unusual procurement and the company’s subsequent move into the storage business.

HPCwire: How quickly did Cray need to respond when the Blue Waters procurement re-opened last year?

Barry Bolding: This opportunity was notable for the combination of its timeline, size and scope. Cray often needs to respond quickly and our manufacturing organization is optimized to produce large systems for customers. But the scope of the Blue Waters opportunity was big enough, and the timeframe was short enough, that we knew it would tax not only our own manufacturing, but our entire supply chain. The challenges included producing and delivering more than 270 Cray compute cabinets, a groundbreaking file system with 25 petabytes of storage and sustained aggregate performance of one terabyte per second, and fitting this into NCSA’s existing environment in a compressed timeframe.

HPCwire: What was the timeframe like?

Bolding: The NCSA request for vendors was issued in early August 2011, and by SC11 we were in contract, so this was a very compressed time to evaluate the architecture. We started delivering the first Cray system just after the contract was signed, and most of the hardware for an early science system was in transit by the end of the year.

HPCwire: Did you already have blueprint plans on hand that you could adapt?

Bolding: No, but we have processes in place and experience with building big systems. Our standard compute and storage products are all designed for high scalability. Cray’s blueprint is simply our single focus on HPC. We are optimized for the possibility of very large installations.

HPCwire: What’s the current status of the Blue Waters installation?

Bolding: In the first phase of the delivery, by early March 2012 we made a complete Cray system available for early science users. This Cray XE6 Early Science System has peak performance of more than one petaflop and two petabytes of high performance Cray Sonexion storage. That’s about 15 percent of the final system. The ESS is a standalone system with 48 cabinets that will be incorporated into the final Blue Waters system.

HPCwire: Who has access to the Early Science System?

Bolding: Initially, six research teams were awarded allocations through an NSF-led competition that started with more than two dozen teams. The research of the six teams focuses on topics ranging from supernovae to climate change to the molecular mechanism of HIV infection. Their progress in meeting preliminary goals has been good. In some cases, the Early Science System is already allowing researchers to do things they couldn’t do before. In May 2012, four more research teams were awarded time on the system. They are studying topics including severe weather, the life cycle of stars, and turbulent combustion.

HPCwire: What’s left to do on the Blue Waters deployment?

Bolding: A substantial portion of the hardware is now on site, so the delivery side is less of a major concern. Our current focus is on integration and performance scaling, including the software and the network. This will be largest Gemini network we’ve built. You always encounter new challenges when you build a system bigger than ever before, so we expect to see some new challenges.

HPCwire: Are you getting performance data yet on real-world codes?

Bolding: Users are already giving conference talks and publishing papers on their work using the Early Science System. The storage subsystem is performing and scaling very well. In the final configuration, there will be one terabyte per second of aggregate bandwidth. On the partial system, we’re seeing linear scaling to about 60 gigabytes per second today.

HPCwire: You’ve said that this is the largest supercomputer Cray was ever contracted to deliver. How was this assignment different from other big ones Cray’s tackled?

Bolding: Deploying our largest supercomputer ever and doing so at a site that hasn’t owned a Cray in recent years is a huge job. We often sell very large systems to existing customers that have started with moderate-sized systems, such as Los Alamos, Oak Ridge, and NERSC. The last time we installed a system of similar magnitude at a site that hadn’t had a Cray in a long time was the “Red Storm” system at Sandia. It’s been nine years since we did that.

Blue Waters will be one of the world’s highest sustained performance configurations on both the compute and storage sides. This is groundbreaking, even for Cray. The storage will be four times larger than on any prior Cray system. It’s no longer just about compute for Cray. World-leading compute and world-leading storage are now the one-two punch for our company.

HPCwire: What’s different about Sonexion storage?

Bolding: The Cray Sonexion storage product line was designed from the ground up for scalability. This is unlike any other Lustre file systems we’ve installed. We couldn’t have met the requirements for NCSA Blue Waters with any current technology other than Sonexion. I believe Sonexion has the best odds of achieving one terabyte per second sustained performance based on its highly scalable building-block architecture. Other vendors are aiming for similar milestone installations, but we see those architectures as less scalable than the Sonexion architecture.

It’s built for high scalability with Scalable Storage Units, or SSUs. Each time you add an SSU you add both bandwidth and capacity to the file system in a very balanced way. The switching and server infrastructure are integrated into the file system racks and cabinets themselves. This is done in the factory so it’s ready to run at the customer site.

This storage architecture also minimizes the switching and cabling needed to any compute module it’s attached to. More conventional architectures require external servers, more complex InfiniBand switching and each server would need many more spinning disks to match the performance of a single Sonexion SSU.

We see all this as adding costs and risks to the ability to scale storage productively. Another unique thing is that Sonexion is also designed as a datacenter-wide file system that connects not just to Cray supercomputers but to any others in the data center.

HPCwire: So do you plan to sell Sonexion products to sites that don’t have Cray supercomputers?

Bolding: Absolutely yes.

HPCwire: How have things been going for the Sonexion products in the marketplace? Has it been hard for HPC buyers to see Cray as a storage vendor?

Bolding: We’re traditionally viewed as an HPC compute company, and customers are still learning to view us as a storage company. But every time we install a new Sonexion system, the perception changes for that customer and that set of users. We’ve already done Sonexion installations in government, academia, and in the energy sector, and they’re all in heavy production mode.

To date, all of these are connected to Cray supercomputers, but we’re starting to sell to non-Cray HPC customers and this will help change current perceptions. Don’t forget that our predecessor, Cray Research, made some of the greatest storage innovations with SSDs and data migration. We work closely with our OEMs to ensure we are on the cutting edge from the perspective of software management, performance, and price-performance. While we’ve worked closely with a storage OEM on it, Sonexion is a Cray offering from the ground up. Our expertise includes Lustre scalability.

HPCwire: NCSA formed 25 domain-specific scientific teams two years before Cray entered the picture and has been working with them to prepare their codes for pursuing sustained petaflop performance on Blue Waters. Has Cray gotten directly involved with these teams?

Bolding: NCSA is the primary driver collaborating with the science teams. NCSA and NSF did highly value Cray’s deep experience with the apps. We have one of the most experienced applications teams in the world. We work with scientists all around the world and we have centers of excellence where we work closely with end-users to help scale up their codes. NCSA saw real value in this.

Today, our apps experts are working closely with NCSA science teams to scale their applications to meet performance expectations. Another Cray system has already enabled sustained petaflops performance on a different workload of five real-world codes. We believe that this demonstrates that Cray systems are more productive at scale than those of any other vendor.

NCSA-NSF users have a different set of very challenging applications, so it won’t be easy to achieve this breakthrough performance level. All applications are different and have all their own challenges. But Blue Waters is a groundbreaking supercomputer and we’re confident it will meet the expectations of NCSA and NSF by enabling users to achieve petascale performance on a range of codes.

HPCwire: Are the requirements of NSF scientific users different from those of DOE scientific users Cray serves?

Bolding: There is no single NSF or DOE user type. We’ve been selling into DOE for a number of years. Some systems, like “Jaguar,” support a small number of apps that are scaling high. NERSC has a much broader mandate and supports a larger number of applications. I think Blue Waters will have both, a broad user base from many scientific domains, and a broad range of scaling requirements and goals, on up to petascale.

The 25 science teams formed by NCSA represent more domains of science than are typical for a DOE site. A subset of Blue Waters users will be running at extreme scale, almost to the full size of the 11.5 petaflop system.

HPCwire: Blue Waters will also be available to industrial users through NCSA’s Private Sector Program. Do these users have any special storage or other requirements?

Bolding: NCSA has a very active private sector program that Cray has joined. We think it’s vital that systems like Blue Waters are leveraged for the good of the economy and American competitiveness. Cray is dedicated to both public-sector and private-sector computing.

Our M-series systems are designed primarily for the private sector. For their most advanced research and in other cases where they don’t have adequate HPC resources of their own, private-sector firms sometimes need access to much larger systems and to expertise in using them. That’s what NCSA’s private sector program is all about, and Cray is now part of this program.

HPCwire: What’s the overall significance of the Blue Waters project for Cray? How does it move you forward as an HPC vendor?

Bolding: NCSA is a flagship site for highlighting Cray as a scalable storage provider, and it’s a great launching point for us. We’ll deploy one of the largest, most capable storage systems in the world there. On the compute side, Blue Waters is the latest in a continuing series of the kinds of big challenges that Cray is organized to face. So, this is an important milestone for us. I don’t think any other company on the planet could deliver the sustained performance we’ll be delivering for Blue Waters in this challenging timeframe.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s second generation N-series platform. The chip IP vendor said the Read more…

By Tiffany Trader

Microsoft’s Azure Quantum Platform Now Offers Toshiba’s ‘Simulated Bifurcation Machine’

September 22, 2020

While pure-play quantum computing (QC) gets most of the QC-related attention, there’s also been steady progress adapting quantum methods for select use on classical computers. Today, Microsoft announced that Toshiba’ Read more…

By John Russell

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availability of instances with Nvidia’s newest GPU, the A100. OCI als Read more…

By John Russell

IBM, CQC Enable Cloud-based Quantum Random Number Generation

September 21, 2020

IBM and Cambridge Quantum Computing (CQC) have partnered to achieve progress on one of the major business aspirations for quantum computing – the goal of generating verified, truly random numbers that can be used for a Read more…

By Todd R. Weiss

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at current count) across the European Union and supplanting HPC Read more…

By Oliver Peckham

AWS Solution Channel

Next-generation aerospace modeling and simulation: benchmarking Amazon Web Services High Performance Computing services

The aerospace industry has been using Computational Fluid Dynamics (CFD) for decades to create and optimize designs digitally, from the largest passenger planes and fighter jets to gliders and drones. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for high-performance computing, a newly created position that is a Read more…

By Tiffany Trader

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s seco Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk man Read more…

By Alex Woodie, Tiffany Trader and Todd R. Weiss

IBM’s Quantum Race to One Million Qubits

September 15, 2020

IBM today outlined its ambitious quantum computing technology roadmap at its virtual Quantum Summit. The eye-popping million qubit number is still far out, agrees IBM, but perhaps not that far out. Just as eye-popping is IBM’s nearer-term plan for a 1,000-plus qubit system named Condor... Read more…

By John Russell

Nvidia Commits to Buy Arm for $40B

September 14, 2020

Nvidia is acquiring semiconductor design company Arm Ltd. for $40 billion from SoftBank in a blockbuster deal that catapults the GPU chipmaker to a dominant position in the datacenter while helping troubled SoftBank reverse its financial woes. The deal, which has been rumored for... Read more…

By Todd R. Weiss and George Leopold

AMD’s Massive COVID-19 HPC Fund Adds 18 Institutions, 5 Petaflops of Power

September 14, 2020

Almost exactly five months ago, AMD announced its COVID-19 HPC Fund, an ongoing flow of resources and equipment to research institutions studying COVID-19 that began with an initial donation of $15 million. In June, AMD announced major equipment donations to several major institutions. Now, AMD is making its third major COVID-19 HPC Fund... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Japan’s Fugaku Tops Global Supercomputing Rankings

June 22, 2020

A new Top500 champ was unveiled today. Supercomputer Fugaku, the pride of Japan and the namesake of Mount Fuji, vaulted to the top of the 55th edition of the To Read more…

By Tiffany Trader

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This