The TOP500 Celebrates 20th Anniversary, Will it Survive 20 More?

By Tom Tabor

June 12, 2012

The TOP500 has provided a ranking of systems for two decades in a consistent fashion, which has provided the high-performance community with a way to compare systems and to establish targets for vendors to deliver increased capabilities to the most challenging applications.

Over the past 20 years, the TOP500 has proven to be a useful and popular benchmark. To a degree, it is a corner point in performance focused on dense linear algebra (compute-intensive floating point), which is highly correlated to many applications in computational science and engineering.

In recent years, new data-intensive problems have come to light that stress the memory subsystem for irregular accesses to data. Complimentary benchmarks are emerging, such as the Graph 500, which evaluates the suitability of a machine’s performance while running data-intensive analytics applications, and the Green500, which provides a ranking of the most energy-efficient supercomputers in the world.

With the upcoming release of the most current rankings, the TOP500 is usually a hot topic of discussion this time of year. I caught up with Professor Hans Meuer recently, considered by many to be the driving force behind the project, to learn more about his thoughts on the TOP500; its past, present, and future.

Tom Tabor: Hans, how timely is this topic at ISC’12 this year?

Hans Meuer: The 39th list will be published on Monday, June 18, during the opening session. That leaves just one more list to compile this year – the November list, which will be released at SC12 – to complete 20 years since the founding TOP500. As we countdown to the 20th anniversary celebration, Erich (Strohmaier), Jack (Dongarra), Horst (Simon), and I will be guests on HPCwire’s Soundbite live from Hamburg, and our ISC Think Tank Series topic will be “The TOP500 – Twenty Years Later.”  At SC’12, we’ll also host a TOP500 history booth to demonstrate the 20 years of development of the project. So this will be a very exciting year for us.

Tabor: Take us back to the beginning. How did you, Jack, Horst and Erich meet and did you meet with the intent of starting a ranking?

Meuer: We have all known each other for a long time. Erich joined my staff at the Mannheim University in 1990, and has thus been involved in the TOP500 project from the very beginning. I invited Jack to talk at the second Mannheim Supercomputer Seminar in 1987, and Horst has attended our HPC conferences regularly since 1990. Ironically, we didn’t hold any special meeting when we launched the project in the spring of 1993. Currently, we meet each year at ISC, and in the U.S., at the SC Conference, to discuss the project.

Tabor: How did the idea for the TOP500 germinate?

Meuer: The Mannheim Supercomputer Statistics merely contained the names of the manufacturers and thus became superfluous right at beginning of the 90s. New statistics that reflected the diversification of supercomputers, the enormous performance difference between low-end and high-end models, the increasing availability of massively parallel processing (MPP) systems, and the strong increase in computing power of the high-end models of workstation suppliers (SMP), was more essential.

To provide for this new statistical foundation, in 1993, Erich and I began to assemble and maintain a list of the 500 most powerful computer systems. We also decided right at the beginning to use the best LINPACK performance, Rmax to rank the systems in our list. The first list was compiled in June of that year. Since then, with the help of HPC sites and manufacturers, it has been compiled twice a year.

Erich and I are the TOP500 founding authors, Jack is the father of LINPACK and came aboard in 1993, and Horst embarked on the journey in 2000.

Tabor: Whose idea was it to call it the TOP500?

Meuer: It was my idea and the underlying reasons are two-fold. The first is that when we completed the Mannheim Supercomputing Statistics project, we were left with 530 systems and I considered it logical to begin where we had stopped. The other reason is sentimental. The Forbes 500 list, which point to the world’s richest and most successful people and corporations, has always fascinated me. So, here we are… focusing on the world’s 500 most powerful systems!

Tabor: Did you ever envision the list becoming so mainstream?

Meuer: No.

Tabor: What was your first instance of the notoriety of the list?

Meuer: Sometime late in the 90s, during one of the sessions at the SC conference, a speaker referred to “the list” in his presentation as a matter of course and not the TOP500 list.

Tabor: On the first list, who was number one and what was the system’s peak performance?

Meuer: This was the Thinking Machines CM-5/1024 at the Los Alamos National Lab, with a best LINPACK performance of 59.7 gigaflops and a peak performance of 131 gigaflops. By the way, the TOP500 app, which is available for free download at the Apple Store contains information on all the past lists.  

Tabor: What do you believe are the most important aspects of the TOP500 that have led it to be a widely referenced benchmark?

Meuer: We have been criticized for choosing LINPACK from the very beginning, but now in the 20th year, I believe that it was this particular choice that has contributed to the success of TOP500. Back then and also now, there simply isn’t an appropriate alternative to LINPACK. Any other benchmark would appear similarly specific, but would not be so readily available for all systems in question. One of LINPACK’s advantages is its scalability, in the sense that it has allowed us for the past 19 years to benchmark systems that cover a performance range of more than 11 orders of magnitude. Another significant advantage is that we can foster competition between manufacturers, countries and sites.

The TOP500 list’s success lies in the compilation and analysis of data over time. We have been able to correctly identify and track nearly all HPC developments over 19 years, covering manufacturers and users of HPC systems, architectures, interconnects, processors, operating systems and more. Above all else, the TOP500’s strength is that it has proved to be an exceptionally reliable tool for forecasting developments in performance.

Tabor: If there were no precedent to follow, would you propose ranking supercomputers on the basis of LINPACK measurements today?

Meuer: Yes, because LINPACK remains a useful, valid and substantive benchmark even in the years to come. And there is currently no alternative to replace it.

Tabor: What do you like and dislike with the LINPACK benchmark?

Meuer: The pros of LINPACK as a yardstick of performance are as following: one figure of merit, simple to define and rank, it allows the problem size to change with machine, and over time and it also allows for competition. The cons are that it emphasizes only “peak” CPU speed and number of CPUs. It does not stress local bandwidth, the memory system or the network, and no single figure of merit can reflect the overall performance of an HPC system. To solely rely on LINPACK today and in the years to come is definitely not enough. Additionally, we need other benchmarks to keep track of new HPC systems.

Tabor: Can you please discuss in a bit more detail the current alternative benchmarks?

Meuer: For the purpose of discussion, let’s focus on three alternative benchmarks.

The HPC Challenge Benchmark (HPC CB) from Jack Dongarra basically consists of seven different benchmarks, each stressing a different part of a system. Of course, High Performance LINPACK (HPL) is represented and stands for the CPU. Ultimately, however we don’t have a single number of merit, but seven numbers represented in a much more complex way by the so-called Kiviat Graphs.

For some people, this is too complex to understand, especially for journalists reporting on new systems entering the HPC arena. For system specialists, the results can be well interpreted and for that reason the HPC CB has reached a certain standard for selecting an HPC system for an institution.

The Green500 List, overseen by Wu-chun Feng and Kirk W. Cameron of Virginia Tech is another complimentary approach to ranking supercomputers. The inaugural Green500 list was announced at SC08 as a complement to the TOP500, to provide a ranking of the most energy-efficient supercomputers in the world, so that supercomputers can now be compared by performance-per-watt. At SC11, the latest Green500 list was published with 500 entries. The number one system in the TOP500, Fujitsu’s K computer, reached a remarkable position of number 32 on the green list, although it represents the largest power consumption, with more than 12.5 MW, as observed in the TOP500 list.

The Graph 500, led by Richard C. Murphy from Sandia National Laboratory is a highly important project that addresses the dominating data-intensive supercomputer applications. As current benchmarks don’t provide useful information on the suitability of supercomputing systems for data intensive applications, a new set of benchmarks is needed to guide the design of hardware/software systems intended to support such “big data” applications. While the TOP500 addresses number crunching, the Graph 500 addresses data crunching applications. Graph algorithms are a core part of many analytics workloads. Backed by a steering committee of 50 international experts, Graph 500 will establish a set of large-scale benchmarks for these applications.

The Graph 500 project includes three major application kernels: concurrent search, optimization (single source shortest path), and edge-oriented. (maximal independent set). It addresses five graph-related business areas: cyber security, medical informatics, data enrichment, social networks, and symbolic networks. The Graph 500 was announced at ISC’10, and the first list appeared at SC’10. (9 systems ranked). Further results have been published at ISC’11 (29 systems) and SC’11 (49 systems) with the next list slated for release at ISC’12.

Tabor: Hans, in your opinion, how much of the reason we use the TOP500 is due to the legacy and how much is because it provides good guidance on how fast a computer really is?

Meuer: I have to admit that the TOP500, with LINPACK, is not the best tool for ranking supercomputers but it’s the only one available. The TOP500, with LINPACK, doesn’t tell you how fast a computer is on useful applications. The TOP500 ranks computers only by their ability to solve a set of linear equations, Ax=b, using a dense random matrix A and nothing else. The misinterpretation of the TOP500 results has surely led to a negative attitude towards LINPACK. Politicians, for example, consider a system’s TOP500 rank as a general rank that is valid for all applications, which of course is not true.

Tabor: Do you think the TOP500 should consider replacing its ranking of systems by flops with flops-per-joule?

Meuer: No.

Tabor: What are your thoughts about expanding the TOP500 to include the price paid for the supercomputer so that one can easily see the price-performance trends?

Meuer: That is a good question. We had thought about this right at the very beginning, but decided not to include any prices. What is the price of a supercomputer? Is it the list price? Is it the negotiated price? That’s a highly vague area, and we were afraid to waste our time with a fly-by-night approach.

Tabor: Do you envision the TOP500 also ranking the performance of cloud computers?

Meuer: We haven’t thought about this yet. When we gain a deeper understanding of cloud computers, we might consider this.

Tabor: Is there any intention to compile all the lists in a book?

Meuer: Yes, we’ve been discussing this since the 15th year of TOP500. We are all more or less very busy, but now that you have reminded me, I’ll start pushing for a discussion in conjunction with our 20th anniversary.

Tabor: Finally Hans, do you believe the TOP500 will still provide a useful measure for ranking systems another 20 years from now?

Meuer: Yes, but I can’t tell you what yardstick we’ll be using 20 years from now.

Tabor: Hans, thank you for taking the time to share this important bit of HPC history with us.

Meuer: With great pleasure Tom… see you in Hamburg.

—–

About the Author

Tom Tabor is CEO and Founder of Tabor Communications, Inc. (TCI), a leading international media, advertising, and communications organization. An industry pioneer, Tom has over 30 years of experience in business-to-business publishing, with the last 24+ years focused primarily on high performance and data-intensive computing technologies.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and h Read more…

By Doug Black

AWS to Offer Nvidia’s T4 GPUs for AI Inferencing

March 19, 2019

The AI inference market is booming, prompting well-known hyperscaler and Nvidia partner Amazon Web Services to offer a new cloud instance that addresses the growing cost of scaling inference. The new “G4” instances... Read more…

By George Leopold

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiology. Clara, you may recall, is Nvidia’s biomedical platform Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Spark That Ignited A New World of Real-Time Analytics

High Performance Computing has always been about Big Data. It’s not uncommon for research datasets to contain millions of files and many terabytes, even petabytes of data, or more. Read more…

DARPA, NSF Seek Real-Time ML Processor

March 18, 2019

A new U.S. research initiative seeks to develop a processor capable of real-time learning while operating with the “efficiency of the human brain.” The National Science Foundation (NSF) and the Defense Advanced Research Projects Agency jointly announced a “Real Time Machine Learning” project on March 15 soliciting industry proposals for “foundational breakthroughs” in hardware required to “build systems that respond and adapt in real time.” Read more…

By George Leopold

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First U.S. Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Optalysys Rolls Commercial Optical Processor

March 7, 2019

Optalysys, Ltd., a U.K. company seeking to advance it optical co-processor technology, moved a step closer this week with the unveiling of what it claims is th Read more…

By George Leopold

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This