SGI Launches Second Generation UV Supercomputer

By Michael Feldman

June 14, 2012

The sequel to SGI’s UV supercomputer has arrived. Dubbed UV 2, the new platform doubles the number of cores and quadruples the memory that can be supported under a single system. The product, which will be officially announced next week at the International Supercomputing Conference in Hamburg, represents the first major revision of SGI’s original UV, which the company debuted in 2009.

The UV’s claim to fame is its ability to support “big memory” applications, whose datasets can stretch into the multiple-terabyte realm. Since the architecture supports large amounts of global shared memory, applications don’t have to slice their data into chunks to be distributed and processed across multiple server nodes, as would be the case for compute clusters. Thanks to the SGI’s NUMAlink interconnect, UV is able to glue together hundreds of CPUs and make them behave as a single manycore system with gobs of memory. Essentially, you can treat the machine as an ultra-scale Linux PC.

The new UV 2 takes this to another level. While the original UV could scale up to 2,048 cores and 16 TB of memory on a single system, UV 2 doubles the max core count to 4,096 and quadruples the memory capacity to 64 TB. Even in the era of big data, that encompasses a lot of applications, at least those that don’t rely on Web-sized datasets.

Even with the lesser memory limits of the first generation UV, the supercomputer has worked its way into application niches across the data-intensive spectrum, primarily in technical computing, but a few on the business side as well. UV has had particular success in areas like life sciences and manufacturing, where the HPC cluster/MPI application paradigm never became fully entrenched. At lot of these applications had their origins on PCs or workstations, so the step up to a single system image UV was a natural one once those users exhausted RAM on the desktop.

The platform has also found application uptake in chemistry, physics (especially astrophysics), defense and intelligence, and research areas like social media analytics. Even business analytics applications like fraud detection are fair game. An example of the latter is a world-wide courier service that is employing a UV machine to detect fraudulent activity in real-time.

To crank up the performance and scalability on this second-generation machine, a lot of the UV parts had to be upgraded, starting with a new CPU. On that front, the UV 2 engineers opted for the latest Intel “Sandy Bridge” Xeon E5-4600 family chips, which replace the Nehalem EX and Westmere EX CPUs offered in the first UV. A fully loaded UV 2 rack with 64 CPUs can now deliver 11 peak teraflops, which is nearly twice the flops of the original Nehalem-based machine.

Conveniently, the Sandy Bridge processor provides an extra couple of address bits, which is what makes the 64 TB memory reach possible. (ScaleMP’s virtual SMP technology also enables a 64 TB memory reach, in this case on Sandy Bridge-based clusters, but does so without the performance benefit of a custom interconnect.) The new CPU also incorporates native support for PCIe Gen 3, basically doubling I/O bandwidth to storage and other external devices.

Speaking of which, UV is able to hook into multiple accelerators, both NVIDIA GPUs and Intel MIC, via a PCIe-based external chassis. Up to 8 GPUs and some unknown number of MIC coprocessors can be linked to a system in this way. At least one customer, the UK’s Computational Cosmology Consortium (COSMOS), is in line to get a MIC-accelerated UV 2.

Aside from the CPU, the other big UV 2 upgrade is NUMAlink 6, the next generation of SGI’s custom system interconnect. NUMAlink makes memory coherency across the UV blades possible; without this special chip, an E5-4600 system would max out at a mere 32 cores and 1.5 TB of memory. Besides adding support for the new E5 CPU, the interconnect also reduces the cabling requirements, while more than doubling the data rate of the previous generation NUMAlink 5, a pretty speedy interconnect in its own right.

“Even a nicely configured InfiniBand cluster really pales in comparison, in terms of system bandwidth that we can deliver,” says Jill Matzke, director of server marketing at SGI.

But according to her, it’s the improved memory capacity that is going to be the real draw here. “While the ability to scale more cores is interesting,” she says, “we think the ability to scale memory is going to be the most important driver for customer uptake and deployment of this technology.”

Product-wise UV 2 will be offered in two incarnations, the UV 20 and the UV 2000. The former is a 4-way rackmount server that tops out at 32 cores and 1.5 TB — the same upper limit you would find in standard server based on E5-4600 parts. The UV 2000 is the one that can scale all the way up.

Not that you need to buy thousands of cores and terabytes of RAM right off. UV 2000 customers can start with just 16 cores and 32 GB of memory and slip more blades into the enclosure as budget allows. With lower bin CPUs, that 16-core entry point system is just $30,000 and according to Matzke, the price increases more or less linearly as you fill the rack with additional CPUs and RAM. Once you get beyond a single rack, the cost of extra cabling and rack-top routers gets factored in.

But even just four racks can get you all the way to 64 terabytes, so there’s not a lot of hardware infrastructure involved. Remember this is not a machine built to max out flops. As with the original UV, the idea here is to offer a lots of shared memory in an affordable package — at least relative to “big iron mainframes. And while the UV may be more expensive than a flash-based system with a comparable memory footprint, SGI is claiming much better price-performance when data bandwidth and latency are taken into account.

If 64 TB of memory doesn’t quite do it for you, SGI lets you lash together multiple systems if you’re looking for a cluster of fat nodes. The maximum configuration in this case is 16K sockets and 8 petabytes of memory.

The UV 20 and UV 2000 are available for shipping now. And if you happen to be in Hamburg Germany next week, the technology will be on display in SGI’s booth at the International Supercomputer Conference.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This