HPC Lists We’d Like to See

By Gary Johnson

June 15, 2012

Since the release of the first TOP500 list in June of 1993, the HPC community has been motivated by the competition to place high on that list. We’re now approaching the twentieth anniversary of the TOP500. In recent years, two additional lists have gained traction: the Green500 and the Graph 500. Would a few more lists be useful? Let’s take a look at a some options.

Two Decades of Lists

In June, at the International Supercomputing Conference in Hamburg, the TOP500 list will celebrate its twentieth anniversary. The first list was published in June of 1993 at the Supercomputing 93 Conference in Mannheim. The top 10 entries on that list are displayed below.

 

The peak performance of the top machine was just under 60 gigaflops. Eight of the top 10 machines were manufactured and sited in the United States, five of those by a now-defunct vendor.

Nostalgia aside, it is interesting to reflect on the impact that the TOP500 list has had, and continues to have, on HPC around the world. While some might argue that the list is too simplistic and fails to capture the true complexity of high performance computers, its beauty also lies in that simplicity. It provides a simple linear ranking of machines by their peak performance at number crunching, as measured by the LINPACK benchmark, in FLOPS (floating point operations per second). It has provided a race that everyone wants to win. Consequently, high placement on the TOP500 list has become a driver on HPC procurements and provides bragging rights and enhanced recruitment power to those at the top.

Green500 & Graph 500 Lists

As was discussed in a previous HPCwire article, the TOP500 List has also spawned at least a couple of additional lists: the Green500, introduced in November of 2007, and Graph 500, introduced in November of 2010. The previously unconstrained race to the top is being complemented by a new form of competition – one constrained by electrical power – and captured in the Green500 list. Here, the measure is energy efficiency and the metric is MFLOPS/watt. Also, data crunching has soared in importance and visibility and is arguably on par with number crunching. Data crunching performance, as measured by an evolving set of kernels from graph algorithms and a metric called TEPS (traversed edges per second), is documented in the Graph 500 list.

These new lists help expand our understanding of machine performance by adding a couple of additional dimensions. At the same time, each list preserves the beauty of the TOP500 list by providing a simple linear ranking. Each gives us a competition to be won. In this same spirit, perhaps we should consider putting a few more HPC dimensions into competitive play. To start the conversation, we’ll propose a few possibilities.

Footprint500

The most capable computers are very large. Housing them is expensive. So, we might want to create a “footprint” measure (actually system volume, but footprint sounds better). The footprint metric could be FLOPS/meter3. Given some agreement on what constitutes the measurable volume of a system, such a Footprint500 list should be relatively straightforward to construct.

For example, let’s make some rough estimates for the RIKEN K Computer, currently at the top of the TOP500 List. The entire K Computer system and all of its supporting equipment are spread across three floors and a basement in its home at the RIKEN Advanced Institute for Computational Science. If we consider only the room in which the computer cabinets are located, it has a floor area of about 3,000 m2. The K Computer’s 864 cabinets sit on an areal footprint of 1,600 m2. As the cabinets are a bit over 2m tall, this yields a volume of about 3,296 m3. The K Computer’s peak performance is 10,510 Teraflops. Thus, it delivers roughly 3.19 teraflops/m3. How does your favorite machine compare?

Faultless500

The reliability of high-end HPC machines is a significant issue. There are several ways to measure system reliability and this is an active topic of research. A common metric is the Mean Time Between Interrupt (MTBI). So, we’ll use this as a placeholder for whatever more precise metric the community of experts may converge on. MTBI can range as low as days or even just hours for our most capable machines. This is not a good situation and it is expected to get worse as systems grow into the exascale range. In order to highlight the issue and provide positive reinforcement to those who make strides in addressing it, we might create a Faultless500 list. To be fair to the larger, more capable, machines the MTBI metric could be replaced with something like a Mean FLOPS Between Interrupt (MFBI) one.

Motion500

Crunching numbers is fast and cheap, while moving data is slow and expensive. This is the mantra one hears these days. So, maybe we need a data motion metric and a Motion500 list. For example, something like bits/second/distance, where distance represents some set of predetermined traverses of a computing system’s memory space. If the traverses look significantly different for number and data crunching applications, then perhaps there should be two lists. Another approach might be that described by Allan Snavely, associate director of the San Diego Supercomputer Center, as data motion capacity: “Take the capacity of each level of the memory hierarchy in bytes and divide by the access time in cycles and sum this up.”

Satisfaction500

From the end user’s perspective, the time to job completion is very important. Obviously, not all application jobs look alike. For example, we’ve already observed that number and data crunching are claimed to be substantially different. Within each of these categories there is further significant differentiation. So while time to completion may be a good metric for end user satisfaction, there is no obvious simple measure, like LINPACK, to apply. Nonetheless, test suites comprised of collections of complete codes representative of those applications consuming the lion’s share of HPC resources can be assembled and used to measure time to completion for the Satisfaction500 list.

About a decade ago, the Department of Energy’s Office of Advanced Scientific Computing Research commissioned a first attempt at something one might see as similar in intent to a Satisfaction500 list. It was called the Applications Performance Matrix (see screenshot below). Its purpose was to provide “a rich source of information on the performance of high-performance computers applied to real science and engineering problems.”

It may have been an idea ahead of its time, as it seems to have disappeared from the web and only to have survived in presentations, like this one given by Bill Buzbee at the 2004 Salishan Conference.

While the Applications Performance Matrix used real applications codes to measure computer performance, a complementary approach has been taken by the HPC Challenge benchmark. This benchmark attempts to get a more holistic view of computer performance by using a suite of seven tests, presumably abstracted from the requirements of real applications.

What we suggest here is “biting the bullet” and running a suite of “full up” applications codes to completion, under pre-specified conditions, on a large collection of computers. With the emergence of a nascent OpenScience movement (see, for example, the Open Chemistry Project) and the imperatives for openness imposed by the centrality of science to public policy formation, perhaps a common set of real applications captured in open codes, to serve as candidates for such a suite, is now within reach.

List of Lists

If each of the above suggestions were implemented, we’d have seven distinct “500” lists available for analysis and decision making. While each list would contain its own collection of machines, presumably there would be reasonable overlap. In our earlier study of the TOP500, Green500 and Graph 500 lists we found this to be the case and, given an incentive to make the measurements, the intersection of the various lists would surely grow.

So, the ultimate list would be a list of all the lists. Given clear identification of machines, so that they could be unambiguously tracked across lists, the ListofLists500 might help us to better understand the character of various high performance computers, while preserving the linear rankings and competitions inherent in the individual lists. Also, if the ListofLists500 were refined enough and diligently maintained, it could serve as the basis for an HPC “configurator.”

Are any of these lists worth a try? Do you have suggestions for other lists? Let us know what you think.

About the author

Gary M. Johnson is the founder of Computational Science Solutions, LLC, whose mission is to develop, advocate, and implement solutions for the global computational science and engineering community.

Dr. Johnson specializes in management of high performance computing, applied mathematics, and computational science research activities; advocacy, development, and management of high performance computing centers; development of national science and technology policy; and creation of education and research programs in computational engineering and science.

He has worked in Academia, Industry and Government. He has held full professorships at Colorado State University and George Mason University, been a researcher at United Technologies Research Center, and worked for the Department of Defense, NASA, and the Department of Energy.

He is a graduate of the U.S. Air Force Academy; holds advanced degrees from Caltech and the von Karman Institute; and has a Ph.D. in applied sciences from the University of Brussels.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed. Speaking Read more…

By Doug Black

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their equipment shipments on time and undamaged, so the teams are r Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This