HPC Lists We’d Like to See

By Gary Johnson

June 15, 2012

Since the release of the first TOP500 list in June of 1993, the HPC community has been motivated by the competition to place high on that list. We’re now approaching the twentieth anniversary of the TOP500. In recent years, two additional lists have gained traction: the Green500 and the Graph 500. Would a few more lists be useful? Let’s take a look at a some options.

Two Decades of Lists

In June, at the International Supercomputing Conference in Hamburg, the TOP500 list will celebrate its twentieth anniversary. The first list was published in June of 1993 at the Supercomputing 93 Conference in Mannheim. The top 10 entries on that list are displayed below.

 

The peak performance of the top machine was just under 60 gigaflops. Eight of the top 10 machines were manufactured and sited in the United States, five of those by a now-defunct vendor.

Nostalgia aside, it is interesting to reflect on the impact that the TOP500 list has had, and continues to have, on HPC around the world. While some might argue that the list is too simplistic and fails to capture the true complexity of high performance computers, its beauty also lies in that simplicity. It provides a simple linear ranking of machines by their peak performance at number crunching, as measured by the LINPACK benchmark, in FLOPS (floating point operations per second). It has provided a race that everyone wants to win. Consequently, high placement on the TOP500 list has become a driver on HPC procurements and provides bragging rights and enhanced recruitment power to those at the top.

Green500 & Graph 500 Lists

As was discussed in a previous HPCwire article, the TOP500 List has also spawned at least a couple of additional lists: the Green500, introduced in November of 2007, and Graph 500, introduced in November of 2010. The previously unconstrained race to the top is being complemented by a new form of competition – one constrained by electrical power – and captured in the Green500 list. Here, the measure is energy efficiency and the metric is MFLOPS/watt. Also, data crunching has soared in importance and visibility and is arguably on par with number crunching. Data crunching performance, as measured by an evolving set of kernels from graph algorithms and a metric called TEPS (traversed edges per second), is documented in the Graph 500 list.

These new lists help expand our understanding of machine performance by adding a couple of additional dimensions. At the same time, each list preserves the beauty of the TOP500 list by providing a simple linear ranking. Each gives us a competition to be won. In this same spirit, perhaps we should consider putting a few more HPC dimensions into competitive play. To start the conversation, we’ll propose a few possibilities.

Footprint500

The most capable computers are very large. Housing them is expensive. So, we might want to create a “footprint” measure (actually system volume, but footprint sounds better). The footprint metric could be FLOPS/meter3. Given some agreement on what constitutes the measurable volume of a system, such a Footprint500 list should be relatively straightforward to construct.

For example, let’s make some rough estimates for the RIKEN K Computer, currently at the top of the TOP500 List. The entire K Computer system and all of its supporting equipment are spread across three floors and a basement in its home at the RIKEN Advanced Institute for Computational Science. If we consider only the room in which the computer cabinets are located, it has a floor area of about 3,000 m2. The K Computer’s 864 cabinets sit on an areal footprint of 1,600 m2. As the cabinets are a bit over 2m tall, this yields a volume of about 3,296 m3. The K Computer’s peak performance is 10,510 Teraflops. Thus, it delivers roughly 3.19 teraflops/m3. How does your favorite machine compare?

Faultless500

The reliability of high-end HPC machines is a significant issue. There are several ways to measure system reliability and this is an active topic of research. A common metric is the Mean Time Between Interrupt (MTBI). So, we’ll use this as a placeholder for whatever more precise metric the community of experts may converge on. MTBI can range as low as days or even just hours for our most capable machines. This is not a good situation and it is expected to get worse as systems grow into the exascale range. In order to highlight the issue and provide positive reinforcement to those who make strides in addressing it, we might create a Faultless500 list. To be fair to the larger, more capable, machines the MTBI metric could be replaced with something like a Mean FLOPS Between Interrupt (MFBI) one.

Motion500

Crunching numbers is fast and cheap, while moving data is slow and expensive. This is the mantra one hears these days. So, maybe we need a data motion metric and a Motion500 list. For example, something like bits/second/distance, where distance represents some set of predetermined traverses of a computing system’s memory space. If the traverses look significantly different for number and data crunching applications, then perhaps there should be two lists. Another approach might be that described by Allan Snavely, associate director of the San Diego Supercomputer Center, as data motion capacity: “Take the capacity of each level of the memory hierarchy in bytes and divide by the access time in cycles and sum this up.”

Satisfaction500

From the end user’s perspective, the time to job completion is very important. Obviously, not all application jobs look alike. For example, we’ve already observed that number and data crunching are claimed to be substantially different. Within each of these categories there is further significant differentiation. So while time to completion may be a good metric for end user satisfaction, there is no obvious simple measure, like LINPACK, to apply. Nonetheless, test suites comprised of collections of complete codes representative of those applications consuming the lion’s share of HPC resources can be assembled and used to measure time to completion for the Satisfaction500 list.

About a decade ago, the Department of Energy’s Office of Advanced Scientific Computing Research commissioned a first attempt at something one might see as similar in intent to a Satisfaction500 list. It was called the Applications Performance Matrix (see screenshot below). Its purpose was to provide “a rich source of information on the performance of high-performance computers applied to real science and engineering problems.”

It may have been an idea ahead of its time, as it seems to have disappeared from the web and only to have survived in presentations, like this one given by Bill Buzbee at the 2004 Salishan Conference.

While the Applications Performance Matrix used real applications codes to measure computer performance, a complementary approach has been taken by the HPC Challenge benchmark. This benchmark attempts to get a more holistic view of computer performance by using a suite of seven tests, presumably abstracted from the requirements of real applications.

What we suggest here is “biting the bullet” and running a suite of “full up” applications codes to completion, under pre-specified conditions, on a large collection of computers. With the emergence of a nascent OpenScience movement (see, for example, the Open Chemistry Project) and the imperatives for openness imposed by the centrality of science to public policy formation, perhaps a common set of real applications captured in open codes, to serve as candidates for such a suite, is now within reach.

List of Lists

If each of the above suggestions were implemented, we’d have seven distinct “500” lists available for analysis and decision making. While each list would contain its own collection of machines, presumably there would be reasonable overlap. In our earlier study of the TOP500, Green500 and Graph 500 lists we found this to be the case and, given an incentive to make the measurements, the intersection of the various lists would surely grow.

So, the ultimate list would be a list of all the lists. Given clear identification of machines, so that they could be unambiguously tracked across lists, the ListofLists500 might help us to better understand the character of various high performance computers, while preserving the linear rankings and competitions inherent in the individual lists. Also, if the ListofLists500 were refined enough and diligently maintained, it could serve as the basis for an HPC “configurator.”

Are any of these lists worth a try? Do you have suggestions for other lists? Let us know what you think.

About the author

Gary M. Johnson is the founder of Computational Science Solutions, LLC, whose mission is to develop, advocate, and implement solutions for the global computational science and engineering community.

Dr. Johnson specializes in management of high performance computing, applied mathematics, and computational science research activities; advocacy, development, and management of high performance computing centers; development of national science and technology policy; and creation of education and research programs in computational engineering and science.

He has worked in Academia, Industry and Government. He has held full professorships at Colorado State University and George Mason University, been a researcher at United Technologies Research Center, and worked for the Department of Defense, NASA, and the Department of Energy.

He is a graduate of the U.S. Air Force Academy; holds advanced degrees from Caltech and the von Karman Institute; and has a Ph.D. in applied sciences from the University of Brussels.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This