HPC Lists We’d Like to See

By Gary Johnson

June 15, 2012

Since the release of the first TOP500 list in June of 1993, the HPC community has been motivated by the competition to place high on that list. We’re now approaching the twentieth anniversary of the TOP500. In recent years, two additional lists have gained traction: the Green500 and the Graph 500. Would a few more lists be useful? Let’s take a look at a some options.

Two Decades of Lists

In June, at the International Supercomputing Conference in Hamburg, the TOP500 list will celebrate its twentieth anniversary. The first list was published in June of 1993 at the Supercomputing 93 Conference in Mannheim. The top 10 entries on that list are displayed below.

 

The peak performance of the top machine was just under 60 gigaflops. Eight of the top 10 machines were manufactured and sited in the United States, five of those by a now-defunct vendor.

Nostalgia aside, it is interesting to reflect on the impact that the TOP500 list has had, and continues to have, on HPC around the world. While some might argue that the list is too simplistic and fails to capture the true complexity of high performance computers, its beauty also lies in that simplicity. It provides a simple linear ranking of machines by their peak performance at number crunching, as measured by the LINPACK benchmark, in FLOPS (floating point operations per second). It has provided a race that everyone wants to win. Consequently, high placement on the TOP500 list has become a driver on HPC procurements and provides bragging rights and enhanced recruitment power to those at the top.

Green500 & Graph 500 Lists

As was discussed in a previous HPCwire article, the TOP500 List has also spawned at least a couple of additional lists: the Green500, introduced in November of 2007, and Graph 500, introduced in November of 2010. The previously unconstrained race to the top is being complemented by a new form of competition – one constrained by electrical power – and captured in the Green500 list. Here, the measure is energy efficiency and the metric is MFLOPS/watt. Also, data crunching has soared in importance and visibility and is arguably on par with number crunching. Data crunching performance, as measured by an evolving set of kernels from graph algorithms and a metric called TEPS (traversed edges per second), is documented in the Graph 500 list.

These new lists help expand our understanding of machine performance by adding a couple of additional dimensions. At the same time, each list preserves the beauty of the TOP500 list by providing a simple linear ranking. Each gives us a competition to be won. In this same spirit, perhaps we should consider putting a few more HPC dimensions into competitive play. To start the conversation, we’ll propose a few possibilities.

Footprint500

The most capable computers are very large. Housing them is expensive. So, we might want to create a “footprint” measure (actually system volume, but footprint sounds better). The footprint metric could be FLOPS/meter3. Given some agreement on what constitutes the measurable volume of a system, such a Footprint500 list should be relatively straightforward to construct.

For example, let’s make some rough estimates for the RIKEN K Computer, currently at the top of the TOP500 List. The entire K Computer system and all of its supporting equipment are spread across three floors and a basement in its home at the RIKEN Advanced Institute for Computational Science. If we consider only the room in which the computer cabinets are located, it has a floor area of about 3,000 m2. The K Computer’s 864 cabinets sit on an areal footprint of 1,600 m2. As the cabinets are a bit over 2m tall, this yields a volume of about 3,296 m3. The K Computer’s peak performance is 10,510 Teraflops. Thus, it delivers roughly 3.19 teraflops/m3. How does your favorite machine compare?

Faultless500

The reliability of high-end HPC machines is a significant issue. There are several ways to measure system reliability and this is an active topic of research. A common metric is the Mean Time Between Interrupt (MTBI). So, we’ll use this as a placeholder for whatever more precise metric the community of experts may converge on. MTBI can range as low as days or even just hours for our most capable machines. This is not a good situation and it is expected to get worse as systems grow into the exascale range. In order to highlight the issue and provide positive reinforcement to those who make strides in addressing it, we might create a Faultless500 list. To be fair to the larger, more capable, machines the MTBI metric could be replaced with something like a Mean FLOPS Between Interrupt (MFBI) one.

Motion500

Crunching numbers is fast and cheap, while moving data is slow and expensive. This is the mantra one hears these days. So, maybe we need a data motion metric and a Motion500 list. For example, something like bits/second/distance, where distance represents some set of predetermined traverses of a computing system’s memory space. If the traverses look significantly different for number and data crunching applications, then perhaps there should be two lists. Another approach might be that described by Allan Snavely, associate director of the San Diego Supercomputer Center, as data motion capacity: “Take the capacity of each level of the memory hierarchy in bytes and divide by the access time in cycles and sum this up.”

Satisfaction500

From the end user’s perspective, the time to job completion is very important. Obviously, not all application jobs look alike. For example, we’ve already observed that number and data crunching are claimed to be substantially different. Within each of these categories there is further significant differentiation. So while time to completion may be a good metric for end user satisfaction, there is no obvious simple measure, like LINPACK, to apply. Nonetheless, test suites comprised of collections of complete codes representative of those applications consuming the lion’s share of HPC resources can be assembled and used to measure time to completion for the Satisfaction500 list.

About a decade ago, the Department of Energy’s Office of Advanced Scientific Computing Research commissioned a first attempt at something one might see as similar in intent to a Satisfaction500 list. It was called the Applications Performance Matrix (see screenshot below). Its purpose was to provide “a rich source of information on the performance of high-performance computers applied to real science and engineering problems.”

It may have been an idea ahead of its time, as it seems to have disappeared from the web and only to have survived in presentations, like this one given by Bill Buzbee at the 2004 Salishan Conference.

While the Applications Performance Matrix used real applications codes to measure computer performance, a complementary approach has been taken by the HPC Challenge benchmark. This benchmark attempts to get a more holistic view of computer performance by using a suite of seven tests, presumably abstracted from the requirements of real applications.

What we suggest here is “biting the bullet” and running a suite of “full up” applications codes to completion, under pre-specified conditions, on a large collection of computers. With the emergence of a nascent OpenScience movement (see, for example, the Open Chemistry Project) and the imperatives for openness imposed by the centrality of science to public policy formation, perhaps a common set of real applications captured in open codes, to serve as candidates for such a suite, is now within reach.

List of Lists

If each of the above suggestions were implemented, we’d have seven distinct “500” lists available for analysis and decision making. While each list would contain its own collection of machines, presumably there would be reasonable overlap. In our earlier study of the TOP500, Green500 and Graph 500 lists we found this to be the case and, given an incentive to make the measurements, the intersection of the various lists would surely grow.

So, the ultimate list would be a list of all the lists. Given clear identification of machines, so that they could be unambiguously tracked across lists, the ListofLists500 might help us to better understand the character of various high performance computers, while preserving the linear rankings and competitions inherent in the individual lists. Also, if the ListofLists500 were refined enough and diligently maintained, it could serve as the basis for an HPC “configurator.”

Are any of these lists worth a try? Do you have suggestions for other lists? Let us know what you think.

About the author

Gary M. Johnson is the founder of Computational Science Solutions, LLC, whose mission is to develop, advocate, and implement solutions for the global computational science and engineering community.

Dr. Johnson specializes in management of high performance computing, applied mathematics, and computational science research activities; advocacy, development, and management of high performance computing centers; development of national science and technology policy; and creation of education and research programs in computational engineering and science.

He has worked in Academia, Industry and Government. He has held full professorships at Colorado State University and George Mason University, been a researcher at United Technologies Research Center, and worked for the Department of Defense, NASA, and the Department of Energy.

He is a graduate of the U.S. Air Force Academy; holds advanced degrees from Caltech and the von Karman Institute; and has a Ph.D. in applied sciences from the University of Brussels.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputing Helps Explain the Milky Way’s Shape

September 30, 2022

If you look at the Milky Way from “above,” it almost looks like a cat’s eye: a circle of spiral arms with an oval “iris” in the middle. That iris — a starry bar that connects the spiral arms — has two stran Read more…

Top Supercomputers to Shake Up Earthquake Modeling

September 29, 2022

Two DOE-funded projects — and a bunch of top supercomputers — are converging to improve our understanding of earthquakes and enable the construction of more earthquake-resilient buildings and infrastructure. The firs Read more…

How Intel Plans to Rebuild Its Manufacturing Supply Chain

September 29, 2022

Intel's engineering roots saw a revival at this week's Innovation, with attendees recalling the show’s resemblance to Intel Developer Forum, the company's annual developer gala last held in 2016. The chipmaker cut t Read more…

Intel Labs Launches Neuromorphic ‘Kapoho Point’ Board

September 28, 2022

Over the past five years, Intel has been iterating on its neuromorphic chips and systems, aiming to create devices (and software for those devices) that closely mimic the behavior of the human brain through the use of co Read more…

DOE Announces $42M ‘COOLERCHIPS’ Datacenter Cooling Program

September 28, 2022

With massive machines like Frontier guzzling tens of megawatts of power to operate, datacenters’ energy use is of increasing concern for supercomputer operations – and particularly for the U.S. Department of Energy ( Read more…

AWS Solution Channel

Shutterstock 1818499862

Rearchitecting AWS Batch managed services to leverage AWS Fargate

AWS service teams continuously improve the underlying infrastructure and operations of managed services, and AWS Batch is no exception. The AWS Batch team recently moved most of their job scheduler fleet to a serverless infrastructure model leveraging AWS Fargate. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1166887495

Improving Insurance Fraud Detection using AI Running on Cloud-based GPU-Accelerated Systems

Insurance is a highly regulated industry that is evolving as the industry faces changing customer expectations, massive amounts of data, and increased regulations. A major issue facing the industry is tracking insurance fraud. Read more…

Do You Believe in Science? Take the HPC Covid Safety Pledge

September 28, 2022

ISC 2022 was back in person, and the celebration was on. Frontier had been named the first exascale supercomputer on the Top500 list, and workshops, poster sessions, paper presentations, receptions, and booth meetings we Read more…

How Intel Plans to Rebuild Its Manufacturing Supply Chain

September 29, 2022

Intel's engineering roots saw a revival at this week's Innovation, with attendees recalling the show’s resemblance to Intel Developer Forum, the company's ann Read more…

Intel Labs Launches Neuromorphic ‘Kapoho Point’ Board

September 28, 2022

Over the past five years, Intel has been iterating on its neuromorphic chips and systems, aiming to create devices (and software for those devices) that closely Read more…

HPE to Build 100+ Petaflops Shaheen III Supercomputer

September 27, 2022

The King Abdullah University of Science and Technology (KAUST) in Saudi Arabia has announced that HPE has won the bid to build the Shaheen III supercomputer. Sh Read more…

Intel’s New Programmable Chips Next Year to Replace Aging Products

September 27, 2022

Intel shared its latest roadmap of programmable chips, and doesn't want to dig itself into a hole by following AMD's strategy in the area.  "We're thankfully not matching their strategy," said Shannon Poulin, corporate vice president for the datacenter and AI group at Intel, in response to a question posed by HPCwire during a press briefing. The updated roadmap pieces together Intel's strategy for FPGAs... Read more…

Intel Ships Sapphire Rapids – to Its Cloud

September 27, 2022

Intel has had trouble getting its chips in the hands of customers on time, but is providing the next best thing – to try out those chips in the cloud. Delayed chips such as Sapphire Rapids server processors and Habana Gaudi 2 AI chip will be available on a platform called the Intel Developer Cloud, which was announced at the Intel Innovation event being held in San Jose, California. Read more…

More Details on ‘Half-Exaflop’ Horizon System, LCCF Emerge

September 26, 2022

Since 2017, plans for the Leadership-Class Computing Facility (LCCF) have been underway. Slated for full operation somewhere around 2026, the LCCF’s scope ext Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Nvidia Introduces New Ada Lovelace GPU Architecture, OVX Systems, Omniverse Cloud

September 20, 2022

In his GTC keynote today, Nvidia CEO Jensen Huang launched another new Nvidia GPU architecture: Ada Lovelace, named for the legendary mathematician regarded as Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

Leading Solution Providers

Contributors

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire