HPC Lists We’d Like to See

By Gary Johnson

June 15, 2012

Since the release of the first TOP500 list in June of 1993, the HPC community has been motivated by the competition to place high on that list. We’re now approaching the twentieth anniversary of the TOP500. In recent years, two additional lists have gained traction: the Green500 and the Graph 500. Would a few more lists be useful? Let’s take a look at a some options.

Two Decades of Lists

In June, at the International Supercomputing Conference in Hamburg, the TOP500 list will celebrate its twentieth anniversary. The first list was published in June of 1993 at the Supercomputing 93 Conference in Mannheim. The top 10 entries on that list are displayed below.

 

The peak performance of the top machine was just under 60 gigaflops. Eight of the top 10 machines were manufactured and sited in the United States, five of those by a now-defunct vendor.

Nostalgia aside, it is interesting to reflect on the impact that the TOP500 list has had, and continues to have, on HPC around the world. While some might argue that the list is too simplistic and fails to capture the true complexity of high performance computers, its beauty also lies in that simplicity. It provides a simple linear ranking of machines by their peak performance at number crunching, as measured by the LINPACK benchmark, in FLOPS (floating point operations per second). It has provided a race that everyone wants to win. Consequently, high placement on the TOP500 list has become a driver on HPC procurements and provides bragging rights and enhanced recruitment power to those at the top.

Green500 & Graph 500 Lists

As was discussed in a previous HPCwire article, the TOP500 List has also spawned at least a couple of additional lists: the Green500, introduced in November of 2007, and Graph 500, introduced in November of 2010. The previously unconstrained race to the top is being complemented by a new form of competition – one constrained by electrical power – and captured in the Green500 list. Here, the measure is energy efficiency and the metric is MFLOPS/watt. Also, data crunching has soared in importance and visibility and is arguably on par with number crunching. Data crunching performance, as measured by an evolving set of kernels from graph algorithms and a metric called TEPS (traversed edges per second), is documented in the Graph 500 list.

These new lists help expand our understanding of machine performance by adding a couple of additional dimensions. At the same time, each list preserves the beauty of the TOP500 list by providing a simple linear ranking. Each gives us a competition to be won. In this same spirit, perhaps we should consider putting a few more HPC dimensions into competitive play. To start the conversation, we’ll propose a few possibilities.

Footprint500

The most capable computers are very large. Housing them is expensive. So, we might want to create a “footprint” measure (actually system volume, but footprint sounds better). The footprint metric could be FLOPS/meter3. Given some agreement on what constitutes the measurable volume of a system, such a Footprint500 list should be relatively straightforward to construct.

For example, let’s make some rough estimates for the RIKEN K Computer, currently at the top of the TOP500 List. The entire K Computer system and all of its supporting equipment are spread across three floors and a basement in its home at the RIKEN Advanced Institute for Computational Science. If we consider only the room in which the computer cabinets are located, it has a floor area of about 3,000 m2. The K Computer’s 864 cabinets sit on an areal footprint of 1,600 m2. As the cabinets are a bit over 2m tall, this yields a volume of about 3,296 m3. The K Computer’s peak performance is 10,510 Teraflops. Thus, it delivers roughly 3.19 teraflops/m3. How does your favorite machine compare?

Faultless500

The reliability of high-end HPC machines is a significant issue. There are several ways to measure system reliability and this is an active topic of research. A common metric is the Mean Time Between Interrupt (MTBI). So, we’ll use this as a placeholder for whatever more precise metric the community of experts may converge on. MTBI can range as low as days or even just hours for our most capable machines. This is not a good situation and it is expected to get worse as systems grow into the exascale range. In order to highlight the issue and provide positive reinforcement to those who make strides in addressing it, we might create a Faultless500 list. To be fair to the larger, more capable, machines the MTBI metric could be replaced with something like a Mean FLOPS Between Interrupt (MFBI) one.

Motion500

Crunching numbers is fast and cheap, while moving data is slow and expensive. This is the mantra one hears these days. So, maybe we need a data motion metric and a Motion500 list. For example, something like bits/second/distance, where distance represents some set of predetermined traverses of a computing system’s memory space. If the traverses look significantly different for number and data crunching applications, then perhaps there should be two lists. Another approach might be that described by Allan Snavely, associate director of the San Diego Supercomputer Center, as data motion capacity: “Take the capacity of each level of the memory hierarchy in bytes and divide by the access time in cycles and sum this up.”

Satisfaction500

From the end user’s perspective, the time to job completion is very important. Obviously, not all application jobs look alike. For example, we’ve already observed that number and data crunching are claimed to be substantially different. Within each of these categories there is further significant differentiation. So while time to completion may be a good metric for end user satisfaction, there is no obvious simple measure, like LINPACK, to apply. Nonetheless, test suites comprised of collections of complete codes representative of those applications consuming the lion’s share of HPC resources can be assembled and used to measure time to completion for the Satisfaction500 list.

About a decade ago, the Department of Energy’s Office of Advanced Scientific Computing Research commissioned a first attempt at something one might see as similar in intent to a Satisfaction500 list. It was called the Applications Performance Matrix (see screenshot below). Its purpose was to provide “a rich source of information on the performance of high-performance computers applied to real science and engineering problems.”

It may have been an idea ahead of its time, as it seems to have disappeared from the web and only to have survived in presentations, like this one given by Bill Buzbee at the 2004 Salishan Conference.

While the Applications Performance Matrix used real applications codes to measure computer performance, a complementary approach has been taken by the HPC Challenge benchmark. This benchmark attempts to get a more holistic view of computer performance by using a suite of seven tests, presumably abstracted from the requirements of real applications.

What we suggest here is “biting the bullet” and running a suite of “full up” applications codes to completion, under pre-specified conditions, on a large collection of computers. With the emergence of a nascent OpenScience movement (see, for example, the Open Chemistry Project) and the imperatives for openness imposed by the centrality of science to public policy formation, perhaps a common set of real applications captured in open codes, to serve as candidates for such a suite, is now within reach.

List of Lists

If each of the above suggestions were implemented, we’d have seven distinct “500” lists available for analysis and decision making. While each list would contain its own collection of machines, presumably there would be reasonable overlap. In our earlier study of the TOP500, Green500 and Graph 500 lists we found this to be the case and, given an incentive to make the measurements, the intersection of the various lists would surely grow.

So, the ultimate list would be a list of all the lists. Given clear identification of machines, so that they could be unambiguously tracked across lists, the ListofLists500 might help us to better understand the character of various high performance computers, while preserving the linear rankings and competitions inherent in the individual lists. Also, if the ListofLists500 were refined enough and diligently maintained, it could serve as the basis for an HPC “configurator.”

Are any of these lists worth a try? Do you have suggestions for other lists? Let us know what you think.

About the author

Gary M. Johnson is the founder of Computational Science Solutions, LLC, whose mission is to develop, advocate, and implement solutions for the global computational science and engineering community.

Dr. Johnson specializes in management of high performance computing, applied mathematics, and computational science research activities; advocacy, development, and management of high performance computing centers; development of national science and technology policy; and creation of education and research programs in computational engineering and science.

He has worked in Academia, Industry and Government. He has held full professorships at Colorado State University and George Mason University, been a researcher at United Technologies Research Center, and worked for the Department of Defense, NASA, and the Department of Energy.

He is a graduate of the U.S. Air Force Academy; holds advanced degrees from Caltech and the von Karman Institute; and has a Ph.D. in applied sciences from the University of Brussels.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 13), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue’s max capacity and doubling 2016 attendee numbers), the one Read more…

By Tiffany Trader

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 13), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This