Inside a NASA Production Supercomputing Center

By Nicole Hemsoth

June 18, 2012

It takes a super workload management tool to power grid, cluster and on-demand computing environments for computational modeling and simulation applications at NASA.Photo Courtesy of NASA Ames Research Center

In the past, scientific and engineering advancements relied primarily on theoretical studies and physical experiments. Today, however, computational modeling and simulation are equally valuable in such endeavors, especially for an agency such as the National Aeronautics and Space Administration (NASA). With a mission “to pioneer the future in space exploration, scientific discovery and aeronautics research,” the use of high-end computing (HEC) for high-fidelity modeling and simulation has become integral to all three of NASA’s mission directorates: aeronautics research, human exploration and operations, and science.

These HEC resources are provided at NASA’s Advanced Supercomputing (NAS) Division at Ames Research Center, Moffett Field, Calif. NAS offers production and development systems to U.S. scientists in government, industry and at universities, with users currently numbering over 1,500. Projects such as designing safe and efficient space exploration vehicles, projecting the impact of human activity on weather patterns and simulating space shuttle launches are studied using the facility’s supercomputers. “We provide world-class HEC and associated services to enable NASA scientists and engineers in all mission directorates to broadly and productively employ large-scale modeling, simulation and analysis for mission impact. We pursue a future where these services empower ever greater NASA mission successes,” says William Thigpen, deputy project manager for the High End Computing Capability (HECC) Project at the NAS Division.

The facility’s current HEC systems include two supercomputers, a 115-petabyte mass storage system for long-term data storage, two secure front-end systems requiring two-factor authentication and two secure unattended proxy systems for remote operations. Key system resources at NAS include: Pleiades, a 126,720-core, 1.75 petaFLOPS (Pflop/s) SGI® Altix® ICE cluster; Columbia, a 4,608-processor SGI Altix® (Itanium 2); and the hyperwall-2, a 1,024-core, 128-node GPU cluster.

Since 300 to 400 jobs are typically running 24 hours a day, seven days a week, the NAS staff works nonstop to meet the demands for time on these machines. “Our mission is to accelerate and enhance NASA’s mission of space exploration, scientific discovery and aeronautics research by continually creating and ensuring optimal use of the most productive HEC environment in the world,” says Thigpen. “Our viewpoint is that we spend a lot of money getting hardware in here, but it really makes sense that it is effectively exploited by our users because the bottom line is we’re not about big hardware, we’re about big science and engineering.”

Building a Supercomputer – Pleiades

Originally installed in the fall of 2008, the Pleiades supercomputer is an SGI Altix ICE 8200/8400 InfiniBand® cluster with Intel® Xeon® quad, hex, and eight-core processors. Considered one of the most powerful general-purpose supercomputers ever built, each of the Pleiades 182 racks (11,776 nodes) has 16 InfiniBand switches to provide the 12D dual-plane hypercube that provides the interconnect for the cluster. The InfiniBand fabric interconnecting Pleiades’  nodes requires more than 65 miles of cabling. Pleiades is the largest (measured by number of nodes) InfiniBand cluster in the world.

Ranked as one of the world’s most powerful computers, the Pleiades supercomputer was built to augment NASA’s current and future high-end computing requirements. “Pleiades is a general-purpose machine and provides for all three components of supercomputers – [capability, capacity and time critical],” says Thigpen. “We have users running jobs using over 18,000 cores, providing new insights into the formation of the universe. There are numerous users running parameter studies (often thousands) using from one to a few thousand cores. Pleiades is also being utilized to answer time-critical questions concerning the shuttle.”

Choosing Components and Software

Pleiades was built to meet as many of the emerging NASA science and engineering mission requirements as possible while remaining within the HEC budget. “The Pleiades architecture was chosen because it provided the best performance/cost ratio of the systems we looked at. Since its original installation in 2008, it has undergone eight expansions. We will continue to build it out as long as the fundamental economics of the system remain sound, and the science and engineering returns remain high,” states Thigpen.

To build Pleiades, NAS engineers began with the components recommended by the vendor and those being used on other systems. The result has been an easy transition to the new environment for NASA users. “We want an environment where the components complement each other, are an easy natural transition for our users and provide a reliable environment,” says Thigpen. For example, the SGI ICE 8200 and 8400 are standard products that have been taken to an extreme size at the NAS facility. Additionally, the InfiniBand network was expanded to incorporate both the data analysis and visualization cluster, as well as the storage system.

“Another consideration is outlining and selecting a scalable architecture,” explains Alan Powers, HPC architect with Computer Science Corp., which holds the primary support contract at the NAS Division,. “We chose SGI because it had a certain architecture that allowed us to build and grow it. [It also had] the best price/performance based on our workload. Where we are today, we’re near a petaflop capability, and it’s been built over a couple of years; we’ve been adding to it slowly. The other vendors’ price/performance wasn’t even close to this platform.”

Managing the Workload

When providing supercomputing resources to 1,500 users, 24/7, workload management is a top priority. Originally developed at NAS in the 1990s and then commercialized, PBS Professional® workload management software has been used since its inception. Commercially developed by Altair Engineering, Inc., Troy, Mich., the PBS platform is designed to power grid, cluster and on-demand computing environments. PBS Professional is used to manage all HEC resources at NAS, including Pleiades.

PBS Professional is a resource allocation tool that makes it possible to create intelligent policies to manage distributed, mixed-vendor computing assets as a single, unified system. Based on a policy-driven architecture, it continually optimizes how technical HEC resources are used, ensuring that they are used effectively and efficiently. Simply put, the software looks at the jobs that want to run, looks at the resources available for them to run on and makes the best match based on a number of criteria. “Those criteria can include the user that’s running and how many jobs that user currently has running, or how many cores his job is currently using. It can also be the queue that a user submits their job in, and those queues can have things limiting them, like how many jobs are running or how many cores all of the jobs together are using. It also can be the mission directorate those users are in,” explains Thigpen.

Powers adds: “The ‘P’ in PBS stands for ‘portable,’ and it allows us to run this on any architecture. We’ve had PBS on fat node architectures, on thin node clients and on IBM architectures. PBS has been able to adapt to all those computing environments. This has allowed our users to have a consistent set of batch scripts across these different environments. They only have to learn one thing. So one, it’s flexible; two, we can use it on any architecture; and three, it’s easy for users to learn.”

Your Own HEC Environment

According to Thigpen, HEC is an enabling technology that allows a company to build products that can meet their customers’ requirements in a cost-effective manner: “By spending a relatively small amount on a system, they can run through hundreds or thousands of alternatives before building a physical prototype. This will allow for a better product with lower production costs.”

However, there are many issues to address when considering whether an HEC environment is the right choice for an enterprise. “There has to be a balance between the cost of the resources, the technology they enable, the increased productivity of their staff, the potential return on their investment and what their competition is doing,” Thigpen concludes.


Footnote: As originally published in Altair’s Concept to Reality magazine’s 2011 Fall/Winter issue. Actual stats updated as reflected on NASA’s Pleiades web page,

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate scientists the ability to use machine learning to identify e Read more…

By Rob Farber

Mellanox Reacts to Activist Investor Pressures in Letter to Shareholders

March 16, 2018

Activist investor Starboard Value has been exerting pressure on Mellanox Technologies to increase its returns. In response, the high-performance networking company on Monday, March 12, published a letter to shareholders outlining its proposal for a May 2018 extraordinary general meeting (EGM) of shareholders and highlighting its long-term growth strategy and focus on operating margin improvement. Read more…

By Staff

Quantum Computing vs. Our ‘Caveman Newtonian Brain’: Why Quantum Is So Hard

March 15, 2018

Quantum is coming. Maybe not today, maybe not tomorrow, but soon enough. Within 10 to 12 years, we’re told, special-purpose quantum systems will enter the commercial realm. Assuming this happens, we can also assume that quantum will, over extended time, become increasingly general purpose as it delivers mind-blowing power. Read more…

By Doug Black

HPE Extreme Performance Solutions

Achieve Optimal Performance at Scale with High Performance Fabrics for HPC

High Performance Computing (HPC) is unlocking a new era of speed and productivity to fuel business transformation. Rapid advancements in HPC capabilities are helping organizations operate faster and more effectively than ever, but in today’s fast-paced marketplace, a new generation of technologies is required to reach greater scalability and cost-efficiency. Read more…

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise IT in its willingness to outsource computational power. The m Read more…

By Chris Downing

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Stephen Hawking, Legendary Scientist, Dies at 76

March 14, 2018

Stephen Hawking passed away at his home in Cambridge, England, in the early morning of March 14; he was 76. Born on January 8, 1942, Hawking was an English theo Read more…

By Tiffany Trader

Hyperion Tackles Elusive Quantum Computing Landscape

March 13, 2018

Quantum computing - exciting and off-putting all at once - is a kaleidoscope of technology and market questions whose shapes and positions are far from settled. Read more…

By John Russell

Part Two: Navigating Life Sciences Choppy HPC Waters in 2018

March 8, 2018

2017 was not necessarily the best year to build a large HPC system for life sciences say Ari Berman, VP and GM of consulting services, and Aaron Gardner, direct Read more…

By John Russell

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

SciNet Launches Niagara, Canada’s Fastest Supercomputer

March 5, 2018

SciNet and the University of Toronto today unveiled "Niagara," Canada's most-powerful supercomputer, comprising 1,500 dense Lenovo ThinkSystem SD530 high-perfor Read more…

By Tiffany Trader

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

World Record: Quantum Computer with 46 Qubits Simulated

December 18, 2017

Scientists from the Jülich Supercomputing Centre have set a new world record. Together with researchers from Wuhan University and the University of Groningen, Read more…

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This