Inside a NASA Production Supercomputing Center

By Nicole Hemsoth

June 18, 2012

It takes a super workload management tool to power grid, cluster and on-demand computing environments for computational modeling and simulation applications at NASA.Photo Courtesy of NASA Ames Research Center

In the past, scientific and engineering advancements relied primarily on theoretical studies and physical experiments. Today, however, computational modeling and simulation are equally valuable in such endeavors, especially for an agency such as the National Aeronautics and Space Administration (NASA). With a mission “to pioneer the future in space exploration, scientific discovery and aeronautics research,” the use of high-end computing (HEC) for high-fidelity modeling and simulation has become integral to all three of NASA’s mission directorates: aeronautics research, human exploration and operations, and science.

These HEC resources are provided at NASA’s Advanced Supercomputing (NAS) Division at Ames Research Center, Moffett Field, Calif. NAS offers production and development systems to U.S. scientists in government, industry and at universities, with users currently numbering over 1,500. Projects such as designing safe and efficient space exploration vehicles, projecting the impact of human activity on weather patterns and simulating space shuttle launches are studied using the facility’s supercomputers. “We provide world-class HEC and associated services to enable NASA scientists and engineers in all mission directorates to broadly and productively employ large-scale modeling, simulation and analysis for mission impact. We pursue a future where these services empower ever greater NASA mission successes,” says William Thigpen, deputy project manager for the High End Computing Capability (HECC) Project at the NAS Division.

The facility’s current HEC systems include two supercomputers, a 115-petabyte mass storage system for long-term data storage, two secure front-end systems requiring two-factor authentication and two secure unattended proxy systems for remote operations. Key system resources at NAS include: Pleiades, a 126,720-core, 1.75 petaFLOPS (Pflop/s) SGI® Altix® ICE cluster; Columbia, a 4,608-processor SGI Altix® (Itanium 2); and the hyperwall-2, a 1,024-core, 128-node GPU cluster.

Since 300 to 400 jobs are typically running 24 hours a day, seven days a week, the NAS staff works nonstop to meet the demands for time on these machines. “Our mission is to accelerate and enhance NASA’s mission of space exploration, scientific discovery and aeronautics research by continually creating and ensuring optimal use of the most productive HEC environment in the world,” says Thigpen. “Our viewpoint is that we spend a lot of money getting hardware in here, but it really makes sense that it is effectively exploited by our users because the bottom line is we’re not about big hardware, we’re about big science and engineering.”

Building a Supercomputer – Pleiades

Originally installed in the fall of 2008, the Pleiades supercomputer is an SGI Altix ICE 8200/8400 InfiniBand® cluster with Intel® Xeon® quad, hex, and eight-core processors. Considered one of the most powerful general-purpose supercomputers ever built, each of the Pleiades 182 racks (11,776 nodes) has 16 InfiniBand switches to provide the 12D dual-plane hypercube that provides the interconnect for the cluster. The InfiniBand fabric interconnecting Pleiades’  nodes requires more than 65 miles of cabling. Pleiades is the largest (measured by number of nodes) InfiniBand cluster in the world.

Ranked as one of the world’s most powerful computers, the Pleiades supercomputer was built to augment NASA’s current and future high-end computing requirements. “Pleiades is a general-purpose machine and provides for all three components of supercomputers – [capability, capacity and time critical],” says Thigpen. “We have users running jobs using over 18,000 cores, providing new insights into the formation of the universe. There are numerous users running parameter studies (often thousands) using from one to a few thousand cores. Pleiades is also being utilized to answer time-critical questions concerning the shuttle.”

Choosing Components and Software

Pleiades was built to meet as many of the emerging NASA science and engineering mission requirements as possible while remaining within the HEC budget. “The Pleiades architecture was chosen because it provided the best performance/cost ratio of the systems we looked at. Since its original installation in 2008, it has undergone eight expansions. We will continue to build it out as long as the fundamental economics of the system remain sound, and the science and engineering returns remain high,” states Thigpen.

To build Pleiades, NAS engineers began with the components recommended by the vendor and those being used on other systems. The result has been an easy transition to the new environment for NASA users. “We want an environment where the components complement each other, are an easy natural transition for our users and provide a reliable environment,” says Thigpen. For example, the SGI ICE 8200 and 8400 are standard products that have been taken to an extreme size at the NAS facility. Additionally, the InfiniBand network was expanded to incorporate both the data analysis and visualization cluster, as well as the storage system.

“Another consideration is outlining and selecting a scalable architecture,” explains Alan Powers, HPC architect with Computer Science Corp., which holds the primary support contract at the NAS Division,. “We chose SGI because it had a certain architecture that allowed us to build and grow it. [It also had] the best price/performance based on our workload. Where we are today, we’re near a petaflop capability, and it’s been built over a couple of years; we’ve been adding to it slowly. The other vendors’ price/performance wasn’t even close to this platform.”

Managing the Workload

When providing supercomputing resources to 1,500 users, 24/7, workload management is a top priority. Originally developed at NAS in the 1990s and then commercialized, PBS Professional® workload management software has been used since its inception. Commercially developed by Altair Engineering, Inc., Troy, Mich., the PBS platform is designed to power grid, cluster and on-demand computing environments. PBS Professional is used to manage all HEC resources at NAS, including Pleiades.

PBS Professional is a resource allocation tool that makes it possible to create intelligent policies to manage distributed, mixed-vendor computing assets as a single, unified system. Based on a policy-driven architecture, it continually optimizes how technical HEC resources are used, ensuring that they are used effectively and efficiently. Simply put, the software looks at the jobs that want to run, looks at the resources available for them to run on and makes the best match based on a number of criteria. “Those criteria can include the user that’s running and how many jobs that user currently has running, or how many cores his job is currently using. It can also be the queue that a user submits their job in, and those queues can have things limiting them, like how many jobs are running or how many cores all of the jobs together are using. It also can be the mission directorate those users are in,” explains Thigpen.

Powers adds: “The ‘P’ in PBS stands for ‘portable,’ and it allows us to run this on any architecture. We’ve had PBS on fat node architectures, on thin node clients and on IBM architectures. PBS has been able to adapt to all those computing environments. This has allowed our users to have a consistent set of batch scripts across these different environments. They only have to learn one thing. So one, it’s flexible; two, we can use it on any architecture; and three, it’s easy for users to learn.”

Your Own HEC Environment

According to Thigpen, HEC is an enabling technology that allows a company to build products that can meet their customers’ requirements in a cost-effective manner: “By spending a relatively small amount on a system, they can run through hundreds or thousands of alternatives before building a physical prototype. This will allow for a better product with lower production costs.”

However, there are many issues to address when considering whether an HEC environment is the right choice for an enterprise. “There has to be a balance between the cost of the resources, the technology they enable, the increased productivity of their staff, the potential return on their investment and what their competition is doing,” Thigpen concludes.

 

Footnote: As originally published in Altair’s Concept to Reality magazine’s 2011 Fall/Winter issue. Actual stats updated as reflected on NASA’s Pleiades web page, http://www.nas.nasa.gov/hecc/resources/pleiades.html.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This