Inside a NASA Production Supercomputing Center

By Nicole Hemsoth

June 18, 2012

It takes a super workload management tool to power grid, cluster and on-demand computing environments for computational modeling and simulation applications at NASA.Photo Courtesy of NASA Ames Research Center

In the past, scientific and engineering advancements relied primarily on theoretical studies and physical experiments. Today, however, computational modeling and simulation are equally valuable in such endeavors, especially for an agency such as the National Aeronautics and Space Administration (NASA). With a mission “to pioneer the future in space exploration, scientific discovery and aeronautics research,” the use of high-end computing (HEC) for high-fidelity modeling and simulation has become integral to all three of NASA’s mission directorates: aeronautics research, human exploration and operations, and science.

These HEC resources are provided at NASA’s Advanced Supercomputing (NAS) Division at Ames Research Center, Moffett Field, Calif. NAS offers production and development systems to U.S. scientists in government, industry and at universities, with users currently numbering over 1,500. Projects such as designing safe and efficient space exploration vehicles, projecting the impact of human activity on weather patterns and simulating space shuttle launches are studied using the facility’s supercomputers. “We provide world-class HEC and associated services to enable NASA scientists and engineers in all mission directorates to broadly and productively employ large-scale modeling, simulation and analysis for mission impact. We pursue a future where these services empower ever greater NASA mission successes,” says William Thigpen, deputy project manager for the High End Computing Capability (HECC) Project at the NAS Division.

The facility’s current HEC systems include two supercomputers, a 115-petabyte mass storage system for long-term data storage, two secure front-end systems requiring two-factor authentication and two secure unattended proxy systems for remote operations. Key system resources at NAS include: Pleiades, a 126,720-core, 1.75 petaFLOPS (Pflop/s) SGI® Altix® ICE cluster; Columbia, a 4,608-processor SGI Altix® (Itanium 2); and the hyperwall-2, a 1,024-core, 128-node GPU cluster.

Since 300 to 400 jobs are typically running 24 hours a day, seven days a week, the NAS staff works nonstop to meet the demands for time on these machines. “Our mission is to accelerate and enhance NASA’s mission of space exploration, scientific discovery and aeronautics research by continually creating and ensuring optimal use of the most productive HEC environment in the world,” says Thigpen. “Our viewpoint is that we spend a lot of money getting hardware in here, but it really makes sense that it is effectively exploited by our users because the bottom line is we’re not about big hardware, we’re about big science and engineering.”

Building a Supercomputer – Pleiades

Originally installed in the fall of 2008, the Pleiades supercomputer is an SGI Altix ICE 8200/8400 InfiniBand® cluster with Intel® Xeon® quad, hex, and eight-core processors. Considered one of the most powerful general-purpose supercomputers ever built, each of the Pleiades 182 racks (11,776 nodes) has 16 InfiniBand switches to provide the 12D dual-plane hypercube that provides the interconnect for the cluster. The InfiniBand fabric interconnecting Pleiades’  nodes requires more than 65 miles of cabling. Pleiades is the largest (measured by number of nodes) InfiniBand cluster in the world.

Ranked as one of the world’s most powerful computers, the Pleiades supercomputer was built to augment NASA’s current and future high-end computing requirements. “Pleiades is a general-purpose machine and provides for all three components of supercomputers – [capability, capacity and time critical],” says Thigpen. “We have users running jobs using over 18,000 cores, providing new insights into the formation of the universe. There are numerous users running parameter studies (often thousands) using from one to a few thousand cores. Pleiades is also being utilized to answer time-critical questions concerning the shuttle.”

Choosing Components and Software

Pleiades was built to meet as many of the emerging NASA science and engineering mission requirements as possible while remaining within the HEC budget. “The Pleiades architecture was chosen because it provided the best performance/cost ratio of the systems we looked at. Since its original installation in 2008, it has undergone eight expansions. We will continue to build it out as long as the fundamental economics of the system remain sound, and the science and engineering returns remain high,” states Thigpen.

To build Pleiades, NAS engineers began with the components recommended by the vendor and those being used on other systems. The result has been an easy transition to the new environment for NASA users. “We want an environment where the components complement each other, are an easy natural transition for our users and provide a reliable environment,” says Thigpen. For example, the SGI ICE 8200 and 8400 are standard products that have been taken to an extreme size at the NAS facility. Additionally, the InfiniBand network was expanded to incorporate both the data analysis and visualization cluster, as well as the storage system.

“Another consideration is outlining and selecting a scalable architecture,” explains Alan Powers, HPC architect with Computer Science Corp., which holds the primary support contract at the NAS Division,. “We chose SGI because it had a certain architecture that allowed us to build and grow it. [It also had] the best price/performance based on our workload. Where we are today, we’re near a petaflop capability, and it’s been built over a couple of years; we’ve been adding to it slowly. The other vendors’ price/performance wasn’t even close to this platform.”

Managing the Workload

When providing supercomputing resources to 1,500 users, 24/7, workload management is a top priority. Originally developed at NAS in the 1990s and then commercialized, PBS Professional® workload management software has been used since its inception. Commercially developed by Altair Engineering, Inc., Troy, Mich., the PBS platform is designed to power grid, cluster and on-demand computing environments. PBS Professional is used to manage all HEC resources at NAS, including Pleiades.

PBS Professional is a resource allocation tool that makes it possible to create intelligent policies to manage distributed, mixed-vendor computing assets as a single, unified system. Based on a policy-driven architecture, it continually optimizes how technical HEC resources are used, ensuring that they are used effectively and efficiently. Simply put, the software looks at the jobs that want to run, looks at the resources available for them to run on and makes the best match based on a number of criteria. “Those criteria can include the user that’s running and how many jobs that user currently has running, or how many cores his job is currently using. It can also be the queue that a user submits their job in, and those queues can have things limiting them, like how many jobs are running or how many cores all of the jobs together are using. It also can be the mission directorate those users are in,” explains Thigpen.

Powers adds: “The ‘P’ in PBS stands for ‘portable,’ and it allows us to run this on any architecture. We’ve had PBS on fat node architectures, on thin node clients and on IBM architectures. PBS has been able to adapt to all those computing environments. This has allowed our users to have a consistent set of batch scripts across these different environments. They only have to learn one thing. So one, it’s flexible; two, we can use it on any architecture; and three, it’s easy for users to learn.”

Your Own HEC Environment

According to Thigpen, HEC is an enabling technology that allows a company to build products that can meet their customers’ requirements in a cost-effective manner: “By spending a relatively small amount on a system, they can run through hundreds or thousands of alternatives before building a physical prototype. This will allow for a better product with lower production costs.”

However, there are many issues to address when considering whether an HEC environment is the right choice for an enterprise. “There has to be a balance between the cost of the resources, the technology they enable, the increased productivity of their staff, the potential return on their investment and what their competition is doing,” Thigpen concludes.

 

Footnote: As originally published in Altair’s Concept to Reality magazine’s 2011 Fall/Winter issue. Actual stats updated as reflected on NASA’s Pleiades web page, http://www.nas.nasa.gov/hecc/resources/pleiades.html.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

ASC18: Tough Applications & Tough Luck

May 17, 2018

The applications at the ASC18 Student Cluster Competition were tough. Tougher than the $3.99 steak special at your local greasy spoon restaurant. The apps are so tough that even Chuck Norris backs away from them slowly. Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and the technology challenges ahead. These discussions happened in Read more…

By Alex R. Larzelere

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

Emerging Advanced Scale Tech Trends Focus of Annual Tabor Conference

May 9, 2018

At Tabor Communications' annual Advanced Scale Forum (ASF) held this week in Austin, the focus was on enterprise adoption of HPC-class technologies and high performance data analytics (HPDA). It’s a confab that brings together end users (CIOs, IT planners, department heads) and vendors and encourages... Read more…

By the Editorial Team

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This