Intel Will Ship Knights Corner Chip in 2012

By Michael Feldman

June 18, 2012

Intel’s first Many Integrated Core (MIC) microprocessor is now just months away from its commercial debut. On Monday at the International Supercomputing Conference (ISC’12) in Hamburg, Intel announced that Knights Corner, the company’s first manycore product, would be in production before the end of 2012. The company also released a few more details about the upcoming product line, including the creation of a new Xeon brand for the architecture, some performance updates on pre-production silicon, and Cray’s adoption of MIC as part of its future Cascade supercomputer.

This was not a Knights Corner launch, however. With the plans now set for the chip to go into production before the end of the year, more than likely that means Intel will debut the product, in all its manycore glory, at SC12 in November. NVIDIA’s big Kepler GPU, the K20, is also expected to launch around this time, setting the stage for an MIC-GPU shootout in Q4.

This fall, TACC is slated to get a boatload of the first MIC coprocessors — 8 petaflops worth — as part of the center’s 10-petaflop Stampede supercomputer, which will be built by Dell. Other Knights Corner systems are also in the works for a handful of large HPC centers, including Jülich Supercomputing Centre, the University of Tokyo, Leibniz Supercomputing Centre (LRZ), Oak Ridge National Laboratory, the Korea Institute of Science and Technology Information (KISTI) and CERN. Depending upon the actual installation schedules and availability of the MIC parts, some or all of these systems may be up and running by November, in time perhaps to log Linpack runs.

But we won’t have to wait for November to hear about Linpack running on MIC machines. According to Intel’s Rajeeb Hazra, Intel’s GM of the Technical Computing group, they’ve been running the High Performance Linpack (HPL) benchmark on pre-production parts and have been able to achieve one teraflop on a single node equipped with a Knights Corner chip. That teraflop, by the way, is provided by the Knights Corner card plus the two Xeon E5 host CPUs, so the MIC chip itself is likely delivering something in the neighborhood of 700 to 800 gigaflops.

Intel has also put together a Xeon E5-MIC experimental cluster with pre-production Knights Corner parts that delivers 118.60 Linpack teraflops. That’s enough to place it at number 150 on the new TOP500 list released earlier today.

The peak performance for the Intel MIC cluster is 180.99, which means the Linpack yield is only 65 percent. Even though that’s pretty anemic compared to a CPU-only cluster, which typically hit 75 to 95 percent of peak, compared to the 50 percent or so yield on the current crop of GPU-accelerated clusters, MIC’s Linpack extraction looks to be significantly better. NVIDIA’s latest Kepler GPU and GPUDirect technology may help to close that gap, but we’ll have to wait and see on that.

Since Intel is not doing the Knights Corner launch at this point, they’re not releasing much more information about the upcoming product here at ISC. All the previous specs — 50-plus cores on 22nm process technology — are still in effect.

Intel, however, did talk about the on-board memory for the first time, saying that the Knights Corner PCIe cards will include at least 8 GB of GDDR5 memory (which, by the way, may have contributed to the better Linpack yield). The current Fermi-based Tesla modules from NVIDIA top out at 6GB of GDDR5, but the upcoming K20 module is likely to get more than that. Intel is still mum about ECC support for Knights Corner’s on-board memory, but as we’ve said before, such support seems like a foregone conclusion.

On the marketing front, the product line is getting a rebrand makeover. The architecture will still be called MIC, but the official product family will now be known as Xeon Phi. The idea here was to leverage the well-established Xeon brand, which defines the leading edge of Intel’s x86 line-up. At the same time, it drives home the point that MIC is an x86-based architecture, rather than some exotic design that Intel cooked up only for bleeding-edge techies.

Although the MIC instruction set, which Intel made public last week, does not match that of the latest Xeon CPUs, bit for bit (mainly diverging in the vector instruction area), the company is quick to point out that its C and Fortran compilers, libraries and other development tools will support the new architecture seamlessly. Plus, we’re reminded, developers are free to program them with the HPC standard parallel frameworks, namely MPI and OpenMP, as well as Intel’s own frameworks like TBB and Cilk Plus. Basically, if an app runs on a Xeon, it should run on a Xeon Phi.

In fact, Hazra made a point of talking up the ability of the Phi chips to run entire applications, rather than just accelerated kernels as is the case for GPUs and FPGAs. According to him, you will be able to run complete apps on the coprocessors, which can be treated as a virtual network node. That belies MIC’s natural role as a coprocessor, but opens up some unique ways to use the chip, as well as helping ease application porting and development.

Intel has to a careful here. Many, if not most, HPC applications are likely to run slower if they are entirely confined to a MIC coprocessor, in part because single-threaded performance on MIC will be inferior to that of a Xeon CPU. Plus, even at 8 GB, local memory capacity on the Phi card is just a fraction what a CPU can access.

And Intel still promotes its beloved Xeon CPUs as the center of the high performance computing universe, with Hazra referring to them as “the foundation of HPC” for general-purpose technical computing workloads. The Xeon Phi chips, he says, are suited for those applications that are highly parallel in nature. But the latter and former have a huge overlap, so talk of using the coprocessor as a CPU seems to send somewhat of a mixed message to HPC’ers.

In any case, OEMs are jumping on the MIC bandwagon. Most of the HPC system vendors in the x86 clusters business today will be offering Xeon Phi-equipped systems, presumably as soon as the first Knights Corner chips start rolling out, or soon thereafter. All the major server makers have signed up, including IBM, HP, Dell, Bull, SGI, and Fujitsu, as well as smaller HPC outfits like Appro, T-Platforms, and Penguin Computing.

Cray too, will be introducing MIC supercomputing in their “Cascade” product line in 2013, a system that will glue Xeon CPUs to Phi coprocessors. Cascade is the result of the DARPA HPCS program, whose goal was to produce productive architectures for multi-petaflop computing. The addition of the MIC chips to Cascade should come as no surprise, given that the system was designed to be based on Intel parts from the get-go.

“This is the next big step in our adaptive supercomputing vision,” said Cray CEO Peter Ungaro. According to him, they’ve already begun taking orders for such Phi-accelerated systems, including one from HLRS at the University of Stuttgart in Germany and another from Kyoto University in Japan.

Although the Xeon Phi product will be initially aimed at traditional HPC science codes, Intel believes that other applications that require high levels of parallelism, especially data parallelism, would also be good candidates. Big data analytics, in particular, appears to be an area ripe for these manycore processors with lots of memory bandwidth, and both the Xeon Phi and NVIDIA GPUs are likely to be jockeying for a chunk of this market.

The idea of using the MIC platform as the basis for big data machines has piqued Cray’s interest too. “We actually see Phi as a very viable candidate even within that [big data] environment,” said Ungaro. uRiKA, Cray’s big data appliance, which it offers under its YarcData division, is currently based on the company’s own custom Threadstorm processor.

Being able to sell these manycore chips into multiple markets beyond HPC would certainly be appealing to Intel and is likely to affect the Xeon Phi roadmap going forward. In the meantime, users will have to wait for Knights Corner launch, which finally appears to be just around the corner.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

NSF Approves Bridges Phase 2 Upgrade for Broader Research Use

January 12, 2017

The recently completed phase 2 upgrade of the Bridges supercomputer at the Pittsburgh Supercomputing Center (PSC) has been approved by the National Science Foundation (NSF) making it now available for research allocations to the national scientific community, according to an announcement posted this week on the XSEDE web site. Read more…

By John Russell

Clemson Software Optimizes Big Data Transfers

January 11, 2017

Data-intensive science is not a new phenomenon as the high-energy physics and astrophysics communities can certainly attest, but today more and more scientists are facing steep data and throughput challenges fueled by soaring data volumes and the demands of global-scale collaboration. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Fast Rewind: 2016 Was a Wild Ride for HPC

December 23, 2016

Some years quietly sneak by – 2016 not so much. It’s safe to say there are always forces reshaping the HPC landscape but this year’s bunch seemed like a noisy lot. Among the noisemakers: TaihuLight, DGX-1/Pascal, Dell EMC & HPE-SGI et al., KNL to market, OPA-IB chest thumping, Fujitsu-ARM, new U.S. President-elect, BREXIT, JR’s Intel Exit, Exascale (whatever that means now), NCSA@30, whither NSCI, Deep Learning mania, HPC identity crisis…You get the picture. Read more…

By John Russell

AWI Uses New Cray Cluster for Earth Sciences and Bioinformatics

December 22, 2016

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), headquartered in Bremerhaven, Germany, is one of the country's premier research institutes within the Helmholtz Association of German Research Centres, and is an internationally respected center of expertise for polar and marine research. In November 2015, AWI awarded Cray a contract to install a cluster supercomputer that would help the institute accelerate time to discovery. Now the effort is starting to pay off. Read more…

By Linda Barney

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. Read more…

By John Russell

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This