Intel Will Ship Knights Corner Chip in 2012

By Michael Feldman

June 18, 2012

Intel’s first Many Integrated Core (MIC) microprocessor is now just months away from its commercial debut. On Monday at the International Supercomputing Conference (ISC’12) in Hamburg, Intel announced that Knights Corner, the company’s first manycore product, would be in production before the end of 2012. The company also released a few more details about the upcoming product line, including the creation of a new Xeon brand for the architecture, some performance updates on pre-production silicon, and Cray’s adoption of MIC as part of its future Cascade supercomputer.

This was not a Knights Corner launch, however. With the plans now set for the chip to go into production before the end of the year, more than likely that means Intel will debut the product, in all its manycore glory, at SC12 in November. NVIDIA’s big Kepler GPU, the K20, is also expected to launch around this time, setting the stage for an MIC-GPU shootout in Q4.

This fall, TACC is slated to get a boatload of the first MIC coprocessors — 8 petaflops worth — as part of the center’s 10-petaflop Stampede supercomputer, which will be built by Dell. Other Knights Corner systems are also in the works for a handful of large HPC centers, including Jülich Supercomputing Centre, the University of Tokyo, Leibniz Supercomputing Centre (LRZ), Oak Ridge National Laboratory, the Korea Institute of Science and Technology Information (KISTI) and CERN. Depending upon the actual installation schedules and availability of the MIC parts, some or all of these systems may be up and running by November, in time perhaps to log Linpack runs.

But we won’t have to wait for November to hear about Linpack running on MIC machines. According to Intel’s Rajeeb Hazra, Intel’s GM of the Technical Computing group, they’ve been running the High Performance Linpack (HPL) benchmark on pre-production parts and have been able to achieve one teraflop on a single node equipped with a Knights Corner chip. That teraflop, by the way, is provided by the Knights Corner card plus the two Xeon E5 host CPUs, so the MIC chip itself is likely delivering something in the neighborhood of 700 to 800 gigaflops.

Intel has also put together a Xeon E5-MIC experimental cluster with pre-production Knights Corner parts that delivers 118.60 Linpack teraflops. That’s enough to place it at number 150 on the new TOP500 list released earlier today.

The peak performance for the Intel MIC cluster is 180.99, which means the Linpack yield is only 65 percent. Even though that’s pretty anemic compared to a CPU-only cluster, which typically hit 75 to 95 percent of peak, compared to the 50 percent or so yield on the current crop of GPU-accelerated clusters, MIC’s Linpack extraction looks to be significantly better. NVIDIA’s latest Kepler GPU and GPUDirect technology may help to close that gap, but we’ll have to wait and see on that.

Since Intel is not doing the Knights Corner launch at this point, they’re not releasing much more information about the upcoming product here at ISC. All the previous specs — 50-plus cores on 22nm process technology — are still in effect.

Intel, however, did talk about the on-board memory for the first time, saying that the Knights Corner PCIe cards will include at least 8 GB of GDDR5 memory (which, by the way, may have contributed to the better Linpack yield). The current Fermi-based Tesla modules from NVIDIA top out at 6GB of GDDR5, but the upcoming K20 module is likely to get more than that. Intel is still mum about ECC support for Knights Corner’s on-board memory, but as we’ve said before, such support seems like a foregone conclusion.

On the marketing front, the product line is getting a rebrand makeover. The architecture will still be called MIC, but the official product family will now be known as Xeon Phi. The idea here was to leverage the well-established Xeon brand, which defines the leading edge of Intel’s x86 line-up. At the same time, it drives home the point that MIC is an x86-based architecture, rather than some exotic design that Intel cooked up only for bleeding-edge techies.

Although the MIC instruction set, which Intel made public last week, does not match that of the latest Xeon CPUs, bit for bit (mainly diverging in the vector instruction area), the company is quick to point out that its C and Fortran compilers, libraries and other development tools will support the new architecture seamlessly. Plus, we’re reminded, developers are free to program them with the HPC standard parallel frameworks, namely MPI and OpenMP, as well as Intel’s own frameworks like TBB and Cilk Plus. Basically, if an app runs on a Xeon, it should run on a Xeon Phi.

In fact, Hazra made a point of talking up the ability of the Phi chips to run entire applications, rather than just accelerated kernels as is the case for GPUs and FPGAs. According to him, you will be able to run complete apps on the coprocessors, which can be treated as a virtual network node. That belies MIC’s natural role as a coprocessor, but opens up some unique ways to use the chip, as well as helping ease application porting and development.

Intel has to a careful here. Many, if not most, HPC applications are likely to run slower if they are entirely confined to a MIC coprocessor, in part because single-threaded performance on MIC will be inferior to that of a Xeon CPU. Plus, even at 8 GB, local memory capacity on the Phi card is just a fraction what a CPU can access.

And Intel still promotes its beloved Xeon CPUs as the center of the high performance computing universe, with Hazra referring to them as “the foundation of HPC” for general-purpose technical computing workloads. The Xeon Phi chips, he says, are suited for those applications that are highly parallel in nature. But the latter and former have a huge overlap, so talk of using the coprocessor as a CPU seems to send somewhat of a mixed message to HPC’ers.

In any case, OEMs are jumping on the MIC bandwagon. Most of the HPC system vendors in the x86 clusters business today will be offering Xeon Phi-equipped systems, presumably as soon as the first Knights Corner chips start rolling out, or soon thereafter. All the major server makers have signed up, including IBM, HP, Dell, Bull, SGI, and Fujitsu, as well as smaller HPC outfits like Appro, T-Platforms, and Penguin Computing.

Cray too, will be introducing MIC supercomputing in their “Cascade” product line in 2013, a system that will glue Xeon CPUs to Phi coprocessors. Cascade is the result of the DARPA HPCS program, whose goal was to produce productive architectures for multi-petaflop computing. The addition of the MIC chips to Cascade should come as no surprise, given that the system was designed to be based on Intel parts from the get-go.

“This is the next big step in our adaptive supercomputing vision,” said Cray CEO Peter Ungaro. According to him, they’ve already begun taking orders for such Phi-accelerated systems, including one from HLRS at the University of Stuttgart in Germany and another from Kyoto University in Japan.

Although the Xeon Phi product will be initially aimed at traditional HPC science codes, Intel believes that other applications that require high levels of parallelism, especially data parallelism, would also be good candidates. Big data analytics, in particular, appears to be an area ripe for these manycore processors with lots of memory bandwidth, and both the Xeon Phi and NVIDIA GPUs are likely to be jockeying for a chunk of this market.

The idea of using the MIC platform as the basis for big data machines has piqued Cray’s interest too. “We actually see Phi as a very viable candidate even within that [big data] environment,” said Ungaro. uRiKA, Cray’s big data appliance, which it offers under its YarcData division, is currently based on the company’s own custom Threadstorm processor.

Being able to sell these manycore chips into multiple markets beyond HPC would certainly be appealing to Intel and is likely to affect the Xeon Phi roadmap going forward. In the meantime, users will have to wait for Knights Corner launch, which finally appears to be just around the corner.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Natural Gas, Precision Agriculture, Neural Networks and More

December 6, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced computing technologies for the AI and exascale era. "Over th Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has now encompassed CPUs offered by the leading public cloud serv Read more…

By Doug Black

Medical Imaging Gets an AI Boost

December 3, 2019

AI technologies incorporated into diagnostic imaging tools have proven useful in eliminating confirmation bias, often outperforming human clinicians who may bring their own prejudices. Another issue slowing progress is t Read more…

By George Leopold

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

AI Needs Intelligent HPC infrastructure

Artificial Intelligence (AI) has revolutionized entire industries and enables humanity to solve some of the most daunting challenges. To accomplish this, it requires massive amounts of data from heterogeneous sources that is processed it new ways that differs significantly from HPC applications. Read more…

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science itself. At SC19, Steve Squyres’ opening keynote recounting th Read more…

By John Russell

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has n Read more…

By Doug Black

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science its Read more…

By John Russell

NSCI Update – Adapting to a Changing Landscape

December 2, 2019

It was November of 2017 when we last visited the topic of the National Strategic Computing Initiative (NSCI). As you will recall, the NSCI was started with an Executive Order (E.O. No. 13702), that was issued by President Obama in July of 2015 and was followed by a Strategic Plan that was released in July of 2016. The question for November of 2017... Read more…

By Alex R. Larzelere

Tsinghua University Racks Up Its Ninth Student Cluster Championship Win at SC19

November 27, 2019

Tsinghua University has done it again. At SC19 last week, the eight-time gold medal-winner team took home the top prize in the 2019 Student Cluster Competition Read more…

By Oliver Peckham

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

How the Gordon Bell Prize Winners Used Summit to Illuminate Transistors

November 22, 2019

At SC19, the Association for Computing Machinery (ACM) awarded the prestigious Gordon Bell Prize to the Swiss Federal Institute of Technology (ETH) Zurich. The Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This