Intel Will Ship Knights Corner Chip in 2012

By Michael Feldman

June 18, 2012

Intel’s first Many Integrated Core (MIC) microprocessor is now just months away from its commercial debut. On Monday at the International Supercomputing Conference (ISC’12) in Hamburg, Intel announced that Knights Corner, the company’s first manycore product, would be in production before the end of 2012. The company also released a few more details about the upcoming product line, including the creation of a new Xeon brand for the architecture, some performance updates on pre-production silicon, and Cray’s adoption of MIC as part of its future Cascade supercomputer.

This was not a Knights Corner launch, however. With the plans now set for the chip to go into production before the end of the year, more than likely that means Intel will debut the product, in all its manycore glory, at SC12 in November. NVIDIA’s big Kepler GPU, the K20, is also expected to launch around this time, setting the stage for an MIC-GPU shootout in Q4.

This fall, TACC is slated to get a boatload of the first MIC coprocessors — 8 petaflops worth — as part of the center’s 10-petaflop Stampede supercomputer, which will be built by Dell. Other Knights Corner systems are also in the works for a handful of large HPC centers, including Jülich Supercomputing Centre, the University of Tokyo, Leibniz Supercomputing Centre (LRZ), Oak Ridge National Laboratory, the Korea Institute of Science and Technology Information (KISTI) and CERN. Depending upon the actual installation schedules and availability of the MIC parts, some or all of these systems may be up and running by November, in time perhaps to log Linpack runs.

But we won’t have to wait for November to hear about Linpack running on MIC machines. According to Intel’s Rajeeb Hazra, Intel’s GM of the Technical Computing group, they’ve been running the High Performance Linpack (HPL) benchmark on pre-production parts and have been able to achieve one teraflop on a single node equipped with a Knights Corner chip. That teraflop, by the way, is provided by the Knights Corner card plus the two Xeon E5 host CPUs, so the MIC chip itself is likely delivering something in the neighborhood of 700 to 800 gigaflops.

Intel has also put together a Xeon E5-MIC experimental cluster with pre-production Knights Corner parts that delivers 118.60 Linpack teraflops. That’s enough to place it at number 150 on the new TOP500 list released earlier today.

The peak performance for the Intel MIC cluster is 180.99, which means the Linpack yield is only 65 percent. Even though that’s pretty anemic compared to a CPU-only cluster, which typically hit 75 to 95 percent of peak, compared to the 50 percent or so yield on the current crop of GPU-accelerated clusters, MIC’s Linpack extraction looks to be significantly better. NVIDIA’s latest Kepler GPU and GPUDirect technology may help to close that gap, but we’ll have to wait and see on that.

Since Intel is not doing the Knights Corner launch at this point, they’re not releasing much more information about the upcoming product here at ISC. All the previous specs — 50-plus cores on 22nm process technology — are still in effect.

Intel, however, did talk about the on-board memory for the first time, saying that the Knights Corner PCIe cards will include at least 8 GB of GDDR5 memory (which, by the way, may have contributed to the better Linpack yield). The current Fermi-based Tesla modules from NVIDIA top out at 6GB of GDDR5, but the upcoming K20 module is likely to get more than that. Intel is still mum about ECC support for Knights Corner’s on-board memory, but as we’ve said before, such support seems like a foregone conclusion.

On the marketing front, the product line is getting a rebrand makeover. The architecture will still be called MIC, but the official product family will now be known as Xeon Phi. The idea here was to leverage the well-established Xeon brand, which defines the leading edge of Intel’s x86 line-up. At the same time, it drives home the point that MIC is an x86-based architecture, rather than some exotic design that Intel cooked up only for bleeding-edge techies.

Although the MIC instruction set, which Intel made public last week, does not match that of the latest Xeon CPUs, bit for bit (mainly diverging in the vector instruction area), the company is quick to point out that its C and Fortran compilers, libraries and other development tools will support the new architecture seamlessly. Plus, we’re reminded, developers are free to program them with the HPC standard parallel frameworks, namely MPI and OpenMP, as well as Intel’s own frameworks like TBB and Cilk Plus. Basically, if an app runs on a Xeon, it should run on a Xeon Phi.

In fact, Hazra made a point of talking up the ability of the Phi chips to run entire applications, rather than just accelerated kernels as is the case for GPUs and FPGAs. According to him, you will be able to run complete apps on the coprocessors, which can be treated as a virtual network node. That belies MIC’s natural role as a coprocessor, but opens up some unique ways to use the chip, as well as helping ease application porting and development.

Intel has to a careful here. Many, if not most, HPC applications are likely to run slower if they are entirely confined to a MIC coprocessor, in part because single-threaded performance on MIC will be inferior to that of a Xeon CPU. Plus, even at 8 GB, local memory capacity on the Phi card is just a fraction what a CPU can access.

And Intel still promotes its beloved Xeon CPUs as the center of the high performance computing universe, with Hazra referring to them as “the foundation of HPC” for general-purpose technical computing workloads. The Xeon Phi chips, he says, are suited for those applications that are highly parallel in nature. But the latter and former have a huge overlap, so talk of using the coprocessor as a CPU seems to send somewhat of a mixed message to HPC’ers.

In any case, OEMs are jumping on the MIC bandwagon. Most of the HPC system vendors in the x86 clusters business today will be offering Xeon Phi-equipped systems, presumably as soon as the first Knights Corner chips start rolling out, or soon thereafter. All the major server makers have signed up, including IBM, HP, Dell, Bull, SGI, and Fujitsu, as well as smaller HPC outfits like Appro, T-Platforms, and Penguin Computing.

Cray too, will be introducing MIC supercomputing in their “Cascade” product line in 2013, a system that will glue Xeon CPUs to Phi coprocessors. Cascade is the result of the DARPA HPCS program, whose goal was to produce productive architectures for multi-petaflop computing. The addition of the MIC chips to Cascade should come as no surprise, given that the system was designed to be based on Intel parts from the get-go.

“This is the next big step in our adaptive supercomputing vision,” said Cray CEO Peter Ungaro. According to him, they’ve already begun taking orders for such Phi-accelerated systems, including one from HLRS at the University of Stuttgart in Germany and another from Kyoto University in Japan.

Although the Xeon Phi product will be initially aimed at traditional HPC science codes, Intel believes that other applications that require high levels of parallelism, especially data parallelism, would also be good candidates. Big data analytics, in particular, appears to be an area ripe for these manycore processors with lots of memory bandwidth, and both the Xeon Phi and NVIDIA GPUs are likely to be jockeying for a chunk of this market.

The idea of using the MIC platform as the basis for big data machines has piqued Cray’s interest too. “We actually see Phi as a very viable candidate even within that [big data] environment,” said Ungaro. uRiKA, Cray’s big data appliance, which it offers under its YarcData division, is currently based on the company’s own custom Threadstorm processor.

Being able to sell these manycore chips into multiple markets beyond HPC would certainly be appealing to Intel and is likely to affect the Xeon Phi roadmap going forward. In the meantime, users will have to wait for Knights Corner launch, which finally appears to be just around the corner.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement on Monday (Jan. 14 Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterized as transforming data into insights – which is exactly wh Read more…

By James Reinders

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPCwire Awards Highlight Supercomputing Achievements in the Sciences

January 3, 2019

In November at SC18 in Dallas, HPCwire Readers’ and Editors’ Choice awards program commemorated its 15th year of honoring achievement in HPC, with categories ranging from Best Use of AI to the Workforce Diversity Leadership Award and recipients across a wide variety of industrial and research sectors. Read more…

By the Editorial Team

White House Top Science Post Filled After Two-Year Vacancy

January 3, 2019

Half-way into Trump's term, the Senate has confirmed a director for the Office of Science and Technology Policy (OSTP), the agency that coordinates science poli Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This