Mellanox Cracks 100 Gbps with New InfiniBand Adapters

By Robert Gelber

June 18, 2012

Interconnect maker Mellanox has developed a new architecture for high performance InfiniBand. Known as Connect-IB, this is the company’s fourth major InfiniBand adapter redesign, following in the footsteps of its InfiniHost, InfiniHost III and ConnectX lines. The new adapters double the throughput of the company’s FDR InfinBand gear, supporting speeds beyond 100 Gbps.

Over the past 10 years, CPU compute power has increased roughly 100-fold, but interconnect bandwidth has been lagging, creating communications bottlenecks in servers. At the same time clusters are getting larger, further compounding the problem. This is certainly happening in HPC, but also in the commercial realm of cloud computing, and now, big data.

In all cases, the trend is toward larger and larger clusters with CPUs whose core counts are increasing at aMoore’s Law pace. With Connect-IB, Mellanox is attempting to re-sync the interconnect with the performance curve, with the goal to provide a balanced ratio of computational power and network bandwidth.

Connect-IB was designed as a foundational technology for future exascale systems and ultra-scale datacenters.  Gilad Shainer, vice president of marketing development at Mellanox, claims the redesign offers unlimited interconnect scalability via its new Dynamic Connected Transport technology. “If you build something, you need it to handle tens of thousands and even hundreds of thousands [of nodes] if you want that architecture to last for the next couple of years,” he told HPCwire.

Connect-IB increases performance for both MPI- and PGAS-based applications. The architecture also features the latest GPUDirect RDMA technology, known as GPUDirect v3. This allows direct GPU-to-GPU communication, bypassing the OS and CPU. Overall, new adapters can process 130 million messages per second. The current generation ConnectX/VPI adapters, which handle both InfiniBand and Ethernet, deliver just 33 million messages per second, or roughly a quarter of Connect-IB’s capabilities.

Latency on the new adapters is 0.7 microseconds, which is equal to that of the latest Connect-X hardware for FDR InfiniBand. That’s pretty much tops in the commodity interconnect space today. Ethernet RDMA (RoCE), for example, comes in slightly behind at 1.3 microsecond latency.

When asked about the latency numbers, Shainer said the technology is approaching its physical limits and that further improvements would be minimal. “We’re getting very close to what you can cut,” he noted. “Right now the bigger portion of the latency is on the server side. It will be reduced moving to the future, but it’s not going to be a huge reduction.”

Connect-IB’s throughput marks the architecture’s greatest advantage. The highest-end part, which needs a PCI Express 3.0 interface, can break 100 Gbps.  The increased bandwidth is welcome among a variety of applications and Shainer explained one hypothetical case involving SSD storage.

He noted that a server loaded with 24 SATA III SSDs could support a theoretical data throughput of 12 GB/second. To achieve that level of I/O without bottlenecks, the server’s interconnect would have to deliver 96 Gbps. This would require the equivalent of 15 8 Gbps Fibre Channel (FC)cards, 10 10GbE cards, or a single Connect-IB card with dual-FDR InfiniBand (56 Gbps) ports. Of course, there are no standard servers with more than a handful of I/O ports, so an FC or Ethernet solution for a heavily loaded SSD configuration is essentially out of the question.

“If you want to go the Fibre Channel way, you would have to put 15 cards in that box,” explained Shainer. “There is no way you’re going to do it. You create storage density, but from the other side you can’t take it out, so you lose the ability to do storage density.”

Mellanox will initially be releasing five InfiniBand adapters using the Connect-IB technology. The first unit will support PCIe 2.0 x16 with one port of 56 Gbps connectivity, which for the first time delivers FDR speeds to AMD-based servers. Two adapters have been also been developed with a PCIe 3.0 x8 interface. With a maximum throughput of 56 Gbps, these adapters can be ordered in one- or two-port configurations.

The last pair of adapters use a full PCIe 3.0 x16 interface. The maximum Connect-IB bandwidth of 112 Gbps is achieved with the dual-FDR-port adapter.  In this case, multiple cables would be required between the adapter and the next hop. Mellanox is also offering a single-port PCIe 3.0 x16 adapter, providing 56 Gbps. Since maximum throughput from each port is the same as that of FDR InfiniBand, the new adapters are compatible with current switches.

Supported operating systems include Windows Server 2008 and a variety of Linux distributions including Red Hat Enterprise and Novell SLES. Connect-IB will also work with VMWare ESX 5.1, OpenFabrics Enterprise Distribution (OFED) and OpenFabrics Windows Distribution (WinOF).

The current Connect-X/VPI adapter line is not going away as a result of the Connect-IB introduction. In fact, the company plans to incorporate the more performant architecture in the fourth generation of Connect-X adapters, which support both InfiniBand and Ethernet.

A number of organizations across HPC, Web 2.0, cloud and storage have been lining up for the new Connect-IB products, according to Shainer.  “We might see deployments this year, but definitely early next year,” he said. “Right now it’s too early to expose the names, but yes, we have customers.”

Prototypes are currently working at Mellanox labs and samples will be sent to customers in Q3, with general availability expected in early Q4. Mellanox will be running a lab demonstration of Connect-IB at ISC’12 this week inHamburg,Germany.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effects in new materials to supporting bioinformatics for advanced healthcare research to screening millions of possible chemical combinations to attack a deadly virus. Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This