Introducing Software Engineering-as-a-Service

By Sudhanshu Hate

June 19, 2012

Abstract

Industry-standard cloud models such as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) support only hosting software end product (software applications). However none of these existing cloud models supports real-time software engineering, maintenance activities, and enabling processes on the cloud.

The envisaged EaaS platform provides the ability to intelligently provision development environments in the cloud. Post-provisioning, it provides an environment to execute end-to-end software development lifecycle activities (SDLC), such as requirements engineering, architecture, design, development, and testing. The platform also supports continuous software maintenance in the cloud. Apart from software engineering and maintenance, the platform provides enabling processes to execute the complete SDLC.

Software development and maintenance activities in the cloud can be performed by connecting remotely to the EaaS instance using dumb terminals.

Introduction

The software application lifecycle broadly consists of two key phases, application development and application deployment. Conventionally application development and hosting happens on-premise (within the enterprise boundary). With the advent of cloud, it is leveraged only for application deployment however; the application engineering and maintenance activities continue to take place on-premise, that is, not in the cloud.

On-premise (outside of cloud and within the enterprise boundary) application development requires up-front investments and planning, in the form of procuring desktops, servers, and software applications. Not only this, it means establishing complete development and maintenance processes and adhering to them.

However, today, no turnkey solution exists which can provision an application development and maintenance ecosystem (development machines/nodes running with hardware, software, servers, processes) off-premise (in the cloud) based on inputs of certain parameters such as application size in the form of use case, function points, duration/timelines, scope, etc.

EaaS provides the turnkey solution to not only provision the complete development ecosystem (hardware, software, desktops, servers, processes) but also enables the complete application lifecycle development and deployment activities in the cloud with the ability to ramp up and ramp down resources.

The cloud-based development environment can be accessed from the in-house machines or dumb terminal by logging into the provisioned system on cloud. This in turn supports the necessary application development, and maintenance lifecycle activities such as coding, version control, check in, check out, code reviews, unit testing, code execution to name a few.

This software provisioning and execution platform will be useful for many enterprises, entrepreneurs, and individual professionals to rent it in “pay as you use” manner. By requesting the environment on demand and releasing it as soon as the work is done, a lot of lead time in conventional hardware, software procurement and money can be saved.

The platform can be accessed by logging into the system using a dumb terminal (a machine with very minimal CPU and memory configurations) that will facilitate software creation at anytime from anywhere without needing to rely on pre-configured desktops or laptops.

Challenges

There are multiple challenges with the existing model of on-premise or off-premise (cloud hosted) application development such as:

  • Current models such as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS) and associated technology vendors such as Amazon, Microsoft, Google, Salesforce, etc. support only various application deployment models which have the ability to provision hardware (nodes) and either allow software installation (IaaS) or provide software service APIs (PaaS) or finished applications (SaaS). However, none of these models supports real-time application development lifecycle (engineering), or maintenance activities including support for the associated software processes.

Platform

Service

Platform Vendor

IaaS

Infrastructure provisioning

Amazon

PaaS

Infrastructure provisioning, Platform APIs, programming language support

Microsoft, Google App Engine

SaaS

Finished product/application can be directly accessed.

Salesforce.com, Google Apps, email, etc.

EaaS

End to end application development lifecycle activities, execution support including persistence

None as yet

 

  • Application development using IaaS, PaaS, and SaaS models has to be done on-premise (outside of cloud and within the enterprise boundary), which means configuring desktops with the requisite development environment.

  • The existing IaaS, PaaS, and SaaS models do not have the ability to intelligently recommend provisioning environments for various activities such as development, testing, production, etc. based on specific application sizing parameters.

  • On-premise development models demand upfront investment (CAPEX) in real estate, hardware, software, and processes which makes the overall software development costly.

  • On-premise development models inhibit the ability to work anytime and from anywhere as they are tightly-coupled with and dependent on specific hardware, software, and processes. This set-up usually exists only in the enterprise boundary on a pre-configured desktop or laptop.

  • Ability to elastically ramp up, ramp down, and provision various test, development, maintenance environments is costly and time-consuming with on-premise.

  • Software needed in on-premise environment requires individual software licenses to be bought from individual vendors.

Proposed Solution – EaaS platform

As depicted in the following diagram, the proposed EaaS system consists of primarily three modules.

Figure 1

Figure 1.0: EaaS Platform Block diagram

The provisioning system is intelligent to recommend sizing for various environment such as

  • development

  • testing

  • staging

  • production environment

based on input of various parameters such as application size in the form of

  • number of use cases

  • function point

  • project timelines, etc.

The provisioning system will also allow the user to select and install specific software development packages or utility software applications for executing the main software project.

The execution environment will support day-to-day software development/maintenance lifecycle activities such as project planning, requirements gathering, architecture, design, code check-out/check-in, coding, profiling, unit testing, integration testing, version control to name a few.

The process module will provide systems and processes for executing a software project at a specific project quality standard such as CMM, ISO level and will provide necessary project management, quality measuring and tracking software systems on the cloud.

The cloud-based development environment will be accessible from on-premise machines or dumb terminals by logging into the provisioned system in the cloud. After which, necessary application development, maintenance lifecycle activities such as coding, version control, check in, check out, code reviews, unit testing, code execution, etc. can be performed.

Details of the Sub-system

The following figure depicts the platform support for key activities, functions. The platform has three key logical modules as provisioning, execution and processes as depicted and detailed in the diagram below.

Figure 2

Figure 2.0: EaaS platform components

Provisioning Environment

The following figure, in the form of block diagram, explains the high-level steps in platform provisioning.

Figure 3

Figure 3.0: Provisioning Module

The provisioning system will rely on a wizard-based workflow that will take one or more inputs from the user, such as application size in terms of function points, number of use cases, timeline within which the project needs to be executed, and associated software to be provisioned. Based on these inputs, the provisioning algorithm will compute sizing for various aspects of the development environment, such as number of nodes, server specs, software, and processes for specific environment such as dev., test, production, etc.

The user can either accept the recommended environment or tweak it based on his/her needs by going back and forth in the workflow.

After confirmation from the user, the provisioning module will provision the necessary environment.

The following are some examples of environments that can be provisioned (provisioning environments are not limited to these):

Development environment – to perform software development, engineering activities.

Performance testing environment – to perform activities such as performance testing, benchmarking.

Integration testing environment – to perform integration testing activities.

Production environment – the environment where the software application will be deployed for end users to perform actual business functions.

Maintenance environment – the environment where software maintenance activities, bug fixing and testing will be done. This environment can also be treated like a staging environment.

In real life, the software project may need more or may not need all of these. Also the configuration for each of these environments would be variable, dependent on client needs, and dependent on the needs of the particular project.

Execution Environment

The execution environment allows users to perform complete end-to-end software engineering activities in the cloud, such as:

Requirements gathering/engineering – tools to capture and document software engineering requirements in the form of use cases, workflows, business interactions, or change requests.

Architecture modelling – tools to define and depict various architectural views, such as business, technology, deployment, information view of the proposed system.

Module design – tools to design various components, sub-systems of the software application.

Coding – integrated Development Environment (IDE) to write, compile, run, and verify the actual code.

Version control – source control for versioning of code, documents, etc.

Unit testing – tools to unit-test the code for a particular use case.

Software documentation – tools to support documentation activities during the lifecycle.

Processes

While performing software engineering and support activities, various supporting processes are needed that are enabled through this module.

Project Management processes – processes to support project management activities during the software development lifecycle such as project plan creation and tracking, milestone creation, planning customer billing milestones, resource planning and allocation, etc.

Quality processes – quality processes to support software development lifecycle activities such as code review, defect logging, defect fixing, estimation, etc.

People processes – processes such as leave planning.

Development processes – processes such as version control, code back up, conducting reviews, etc.

Benefits of the Solution

  1. Ability to support an end-to-end software environment in the cloud (provisioning, execution-software engineering and deployment, ecosystem-processes).

  2. For end users, using the environment doesn’t require a large upfront investment but relies on resource or transaction-based pricing (CAPEX to OPEX).

  3. Ability to work anytime from anywhere by providing necessary credentials to enter the cloud.

  4. Ability to increase or decrease the number of development nodes as per the demand of the application development lifecycle, provision various test and release environments.

  5. Provide suggestions about distributing the load across various phases in lifecycle to help optimize and plan resources and cost.

  6. All software licenses can be either provided from the provisioning environment within the cloud or made to custom install in the cloud environment.

  7. The platform enables channels of co-creation and harnesses collective intelligence for the distributed workforce.

Summary

Conventionally, software development activities require a lot of time because of the effort involved in planning, procuring, and execution. Not only are the procurement lead times very lengthy, but also consume extraordinary upfront investments in hardware, software and at times defeat the business case in the short term.

The cloud avenue to plan, procure, and execute end-to-end software engineering activities will not only help eliminate the challenges mentioned above, by allowing enterprises to in essence “rent” only what is needed at any point in the SDLC, but also enable the anytime-anywhere development in this distributed workforce world.

Acknowledgments

Author would like to acknowledge the efforts of Naveen Kumar Principal, Infosys Ltd. and Sameer Suryakant Kulkarni, Content Architect, Infosys Ltd.

About the Author

Sudhanshu Hate (Suds) is a Senior Technology Architect at Infosys Labs, Infosys Limited. He has more than 14 years of industry experience working across various stages of SDLC. For last several years, he has been responsible for technology research, envisioning, building, and consulting on Microsoft technology based solutions.

His areas of work span across cutting-edge technology research, architecture reviews, defining technology strategy, point of views with focus around Microsoft .NET stack, cloud (Windows Azure), big data, and high performance computing

Sudhanshu has co-authored two books: ASP.NET 4 Social Networking and .NET 4 for Enterprise Architects and Developers. He has also written several papers and presented at various conferences.

Note: The author has a pending patent on this very subject.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Activist Investor Starboard Buys 10.7% Stake in Mellanox; Sale Possible?

November 20, 2017

Starboard Value has reportedly taken a 10.7 percent stake in interconnect specialist Mellanox Technologies, and according to the Wall Street Journal, has urged the company “to improve its margins and stock and explore Read more…

By John Russell

Installation of Sierra Supercomputer Steams Along at LLNL

November 20, 2017

Sierra, the 125 petaflops (peak) machine based on IBM’s Power9 chip being built at Lawrence Livermore National Laboratory, sometimes takes a back seat to Summit, the ~200 petaflops system being built at Oak Ridge Natio Read more…

By John Russell

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Share This