HPC and the Spirit of St. Louis

By Thomas Sterling

June 20, 2012

Every year, as the International Supercomputing Conference in Germany approaches, our good friends here at HPCwire invite me to reflect on the trends of the past 12 months, not so much to provide a potentially tedious list of specific events, product deliveries, and TOP500 mantras but rather to convey a personal sense of what it all adds up to and possibly means for the future of HPC.

This year, to do so, is both easy and difficult. As a field, we are at an inflection point marked by significant progress and innovation in form and method, while at the same time we are confronted by uncertainty at a level that is at least uncomfortable for our system providers and possibly disruptive. There is certainly more contention about degree and direction of product and research investment, both within the US and internationally.

HPC has certainly entered a period of diversity far different than a decade ago, and that is not simply a function of the more than two orders of magnitude of Linpack performance in a time of Pax MPI. The easy part is to recite the buzz words of the year: “GPU”, “big data”, “clouds,” and “exascale.” If you are on one of these trains, then according to popular belief, you are on the fast track.

The mad dash to flops through the means of cramming as many ALUs as possible in the dense (and successful) form factor of a GPU, sometimes referred to as “accelerators,” has pushed passed the tipping point, with many, but not all major new installations incorporating these flops multipliers in their arsenal on the field of big iron.

Both NVIDIA and AMD are providing the punch in heterogeneity, although with vary different architectures. It’s actually interesting to watch NVIDIA on the wrong side of the PCI bus move ARM into their modules. AMD is moving their accelerator module into, or at least closer to, their multicore array. Choose your own benchmark (you actually should), but for some, the AMD strategy appears to be working, while the NVIDIA offering is clearly in the lead.

In the US, new big systems like Titan at Oak Ridge and Blue Waters at the University of Illinois are betting on this, and preparing to break through 10 petaflops based on Cray’s latest supercomputing offerings. Both China, with Tianhe-1A, and Japan, with TSUBAME 2, have taken a similar path, each with their own novel contributions.

But there are exceptions, even at the top end. Kei (K) in Kobe, the fastest machine at the time of this writing, has a more tightly integrated architecture provided by Fujitsu as it delivers about 10 petaflops and an array of IBM Blue Gene systems are banking on millions of lighter weight cores in a homogeneous system architecture to deliver an easier-to-program, and therefore more general class of computer, with lower power. (Note the GPUs are good on power as well.).

But programming remains a challenge, and if that is not hard enough, portability is even trickier, especially performance and scalability portability. There are on the order of 50,000-plus CUDA programmers but that does not mean the programming of large scalable systems incorporating GPUs is solved. OpenCL, a community-wide effort to provide an open programming methodology and one that addresses the problems somewhat more broadly, is in work and is attracting a growing body of users. OpenACC is an inchoate programming formalism with broader goals and an OpenMP-like touch and feel.

Many assert that we are looking at the system/programming family of the future. Others (and I’m among them) think it is a transitory phase, which will evolve into something as yet undefined. At least one heavy hitter, Intel, is betting on something all together different; their early MIC chip that defines a new manycore socket exhibiting homogeneity, reduced power, and generality. Clearly, the HPC community is not of a uniform opinion.

A very constructive movement that has gained momentum over the last year in the field of HPC is dubbed “big data.” In science and engineering more and more problems are challenged by the management, processing, and communication of potentially enormous amounts of associated data, whether observed by sensors or derived through simulation. The world’s largest telescopes, LIGO (Laser Interferometric Gravitational Observatory), and of course the LHC (Large Hadron Collider at CERN) are all examples of on-going experiments that generate constant streams of data that have to be dealt with. But biology and medical science also create an ever-growing body of data where cross correlations and data mining becomes an increasing challenge.

Storage capacity is only the beginning of the daunting problems confronting big data science. Communication bandwidth, latency, and reliability for data integrity, as well as power and cost are now and at an increasing pace continue to dominate big data science. Fortunately, unlike some other aspects of mostly flops-intense scientific computing, help will come from industry. This is because big data may generate big profits.

The needs of science in this realm are also manifest in the commercial space from large relational databases, through inventory and sales management, to social networks and search engines. These and other markets will drive technology advancement by the vendors that should have substantial impact on the science domain as well. But over-exuberance in our field is abundant and there are some well-intentioned practitioners in the big data arena who assert that this is THE problem in scientific computing. My message to them is: there are enough problems in HPC to go around.

Of course, according to some, the answer to the question of where to put all that data, or for that matter, where to process it (or any other kind of computing one might need to do) is obvious: it’s the cloud! Well maybe.

The value of clouds or “The Cloud” — I don’t know which — is real, permitting shared environments, data sources, services etc. among multiple people or communities and among the multiple platforms of a single individual. This is a rapidly moving capability and interface the full societal impact of which is probably unpredictable even to the most visionary among us but can be anticipating to be enormous and far reaching.

But for HPC, the utility of clouds in the future is, well, foggy. There are some sweet spots. Storage of data, larger than easily managed by a modest department, but smaller than some horrific size, is likely. The problem with ultra-large data sets is that they have to get moved. If they accrue slowly and are only lightly sampled, this can work. But if the entire data set has to be processed by local computing resources, then the intervening bandwidth provided by the internet simply may not be adequate.

On the computing side, there is an attraction to amortizing the cost and administration of a large array of computing resources across many users. Indeed, the accessibility of a system of very large scale that could not be acquired by any but a few institutions is a potential breakthrough in operational modality. But HPC reflects different forms of usage. The clouds can supply “throughput computing” and a significant percentage of the HPC workload is of this kind. Indeed, pools of resources including workstation farms across academic campuses and else where have been widely employed over decades.

But HPC has many computational challenges, single programs, that are tightly coupled and for which much of the programming challenge is performance tuning. Latencies have to be low, overheads even lower, and cost of information flow understood and stable. Clouds provide none of this in very large configurations. In some sense, this is their strength; successive requests are serviced by different configurations of available resources on demand. But for very large complex problems, they are not suitable, or at least less than optimal. Success of the cloud will require that we benefit from its advantages but not over-hype it and ultimately become disappointed.

People love milestones to mark progress and not just HPC people. In the last century two such captured the imagination of the world. One that I lived through was getting to the Moon with “one small step” provided Neil Armstrong in 1969. But another was a flight non-stop from New York to Paris by Charles Lindbergh in 1927 to claim the Raymond Orteig Prize. Today, the HPC community has self-defined our next milestone as exascale.

Over the last year, this objective has been codified by the US and internationally through meetings, plans, and programs. One international forum, the International Exascale Software Project (IESP), was completed after more than two years with its last of eight meetings in Kobe, Japan. The European Exascale Software Initiative (EESI) was also completed and is now succeeded by EESI-2. Plans are being considered in China, Japan, and Russia for their own path to exascale computing. In the US, the Department of Energy has launched at least three programs to develop a sufficient understanding and capability not just to get to exaflops, but to derive the right kind of exascale systems (hardware and software) and programming methodologies.

The Predictive Science Academic Alliance Program (PSAAP II) has just accepted proposals for exascale application development and system software. The co-design centers are also focused on the development of application algorithms and the systems upon which they are to run. The Modeling of Execution Model projects are exploring and quantifying the very principles upon which future exascale systems will be designed and operated. And the X-stack Program has just selected the teams that will develop next-generation system software and programming environments that will lead to exascale computing while providing nearer term utility as well.

But there is a difference between the milestones of 1927 and 1969 on the one hand, and that of the exascale, on the other. As extraordinary as Lindbergh’s historic accomplishment was, it was an end in itself. That cannot be the case for exascale computing. While our field has been guilty of stunt machines in the past, the cost and importance of achieving useful exascale capability, capacity, and application is too great to invest in merely claiming the first HPL exaflops Rmax run

And if some institution, agency, or nation does force such an artificial solution for a short-lived sense of glory, then surely the serious HPC community should mark this act with disdain. The future of HPC is the future of exascale but not merely such systems or benchmarks in and of themselves, but rather the scientific, medical, societal, and commercial breakthroughs that these systems will enable.

The Spirit of St Louis flew from New York to Paris. But it took a ship back to the US. It wouldn’t have made it if it had tried to do it in reverse. The head winds, which helped it fly east, would have impeded its progress west. The Spirit of Saint Louis now lives in the Smithsonian Air and Space Museum, the world’s most popular museum.

When viewing it from the 2nd floor, the discerning eye will notice a very peculiar thing; there is no front-looking window. Lindbergh could not see where he was going (although he did have a small periscope). From the side windows he could see where he was and guess what was coming next but he did not have the vision ahead.

HPC cannot afford to fly blind. We cannot just use our current position to assume we will make the right incremental progress towards our future destination. And we can’t just build an exascale computer to sit in a museum, even if it does run a benchmark. HPC is a tool for humanity to solve problems of importance when faced with so many critical challenges. No more stunt machines, please.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Democratization of HPC Part 3: Ninth Graders Tap HPC in the Cloud to Design Flying Boats

October 18, 2018

This is the third in a series of articles demonstrating the growing acceptance of high-performance computing (HPC) in new user communities and application areas. In this article we present UberCloud use case #208 on how Read more…

By Wolfgang Gentzsch and Håkon Bull Hove

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phase, on the near side of a difficult chasm to cross. In respon Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

One Small Step Toward Mars: One Giant Leap for Supercomputing

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. Read more…

IBM Accelerated Insights

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questions and, you won’t be surprised, offers a firm “it’s wo Read more…

By John Russell

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phas Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questio Read more…

By John Russell

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia Platform Pushes GPUs into Machine Learning, High Performance Data Analytics

October 10, 2018

GPU leader Nvidia, generally associated with deep learning, autonomous vehicles and other higher-end enterprise and scientific workloads (and gaming, of course) Read more…

By Doug Black

Federal Investment in Exascale – What It Really Means

October 10, 2018

Earlier this month, the EuroHPC JU (Joint Undertaking) reached critical mass, and it seems all EU and affiliated member states, bar the UK (unsurprisingly), have or will sign on. The EuroHPC JU was born from a recognition that individual EU member states, and the EU as a whole, were significantly underinvesting in HPC compared to the US, China and Japan, who all have their own exascale investment and delivery strategies (NSCI, 13th 5 Year Plan, Post-K, etc). Read more…

By Dairsie Latimer

NERSC-9 Clues Found in NERSC 2017 Annual Report

October 8, 2018

If you’re eager to find out who’ll supply NERSC’s next-gen supercomputer, codenamed NERSC-9, here’s a project update to tide you over until the winning bid and system details are revealed. The upcoming system is referenced several times in the recently published 2017 NERSC annual report. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

Leading Solution Providers

HPC on Wall Street 2018 Booth Video Tours Playlist

Arista

Dell EMC

IBM

Intel

RStor

VMWare

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Eindhoven University of Technology (TU/e) and KU Leuven research group conducts the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the peloton, i.e., the main pack of cyclists in a race. Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This