HPC and the Spirit of St. Louis

By Thomas Sterling

June 20, 2012

Every year, as the International Supercomputing Conference in Germany approaches, our good friends here at HPCwire invite me to reflect on the trends of the past 12 months, not so much to provide a potentially tedious list of specific events, product deliveries, and TOP500 mantras but rather to convey a personal sense of what it all adds up to and possibly means for the future of HPC.

This year, to do so, is both easy and difficult. As a field, we are at an inflection point marked by significant progress and innovation in form and method, while at the same time we are confronted by uncertainty at a level that is at least uncomfortable for our system providers and possibly disruptive. There is certainly more contention about degree and direction of product and research investment, both within the US and internationally.

HPC has certainly entered a period of diversity far different than a decade ago, and that is not simply a function of the more than two orders of magnitude of Linpack performance in a time of Pax MPI. The easy part is to recite the buzz words of the year: “GPU”, “big data”, “clouds,” and “exascale.” If you are on one of these trains, then according to popular belief, you are on the fast track.

The mad dash to flops through the means of cramming as many ALUs as possible in the dense (and successful) form factor of a GPU, sometimes referred to as “accelerators,” has pushed passed the tipping point, with many, but not all major new installations incorporating these flops multipliers in their arsenal on the field of big iron.

Both NVIDIA and AMD are providing the punch in heterogeneity, although with vary different architectures. It’s actually interesting to watch NVIDIA on the wrong side of the PCI bus move ARM into their modules. AMD is moving their accelerator module into, or at least closer to, their multicore array. Choose your own benchmark (you actually should), but for some, the AMD strategy appears to be working, while the NVIDIA offering is clearly in the lead.

In the US, new big systems like Titan at Oak Ridge and Blue Waters at the University of Illinois are betting on this, and preparing to break through 10 petaflops based on Cray’s latest supercomputing offerings. Both China, with Tianhe-1A, and Japan, with TSUBAME 2, have taken a similar path, each with their own novel contributions.

But there are exceptions, even at the top end. Kei (K) in Kobe, the fastest machine at the time of this writing, has a more tightly integrated architecture provided by Fujitsu as it delivers about 10 petaflops and an array of IBM Blue Gene systems are banking on millions of lighter weight cores in a homogeneous system architecture to deliver an easier-to-program, and therefore more general class of computer, with lower power. (Note the GPUs are good on power as well.).

But programming remains a challenge, and if that is not hard enough, portability is even trickier, especially performance and scalability portability. There are on the order of 50,000-plus CUDA programmers but that does not mean the programming of large scalable systems incorporating GPUs is solved. OpenCL, a community-wide effort to provide an open programming methodology and one that addresses the problems somewhat more broadly, is in work and is attracting a growing body of users. OpenACC is an inchoate programming formalism with broader goals and an OpenMP-like touch and feel.

Many assert that we are looking at the system/programming family of the future. Others (and I’m among them) think it is a transitory phase, which will evolve into something as yet undefined. At least one heavy hitter, Intel, is betting on something all together different; their early MIC chip that defines a new manycore socket exhibiting homogeneity, reduced power, and generality. Clearly, the HPC community is not of a uniform opinion.

A very constructive movement that has gained momentum over the last year in the field of HPC is dubbed “big data.” In science and engineering more and more problems are challenged by the management, processing, and communication of potentially enormous amounts of associated data, whether observed by sensors or derived through simulation. The world’s largest telescopes, LIGO (Laser Interferometric Gravitational Observatory), and of course the LHC (Large Hadron Collider at CERN) are all examples of on-going experiments that generate constant streams of data that have to be dealt with. But biology and medical science also create an ever-growing body of data where cross correlations and data mining becomes an increasing challenge.

Storage capacity is only the beginning of the daunting problems confronting big data science. Communication bandwidth, latency, and reliability for data integrity, as well as power and cost are now and at an increasing pace continue to dominate big data science. Fortunately, unlike some other aspects of mostly flops-intense scientific computing, help will come from industry. This is because big data may generate big profits.

The needs of science in this realm are also manifest in the commercial space from large relational databases, through inventory and sales management, to social networks and search engines. These and other markets will drive technology advancement by the vendors that should have substantial impact on the science domain as well. But over-exuberance in our field is abundant and there are some well-intentioned practitioners in the big data arena who assert that this is THE problem in scientific computing. My message to them is: there are enough problems in HPC to go around.

Of course, according to some, the answer to the question of where to put all that data, or for that matter, where to process it (or any other kind of computing one might need to do) is obvious: it’s the cloud! Well maybe.

The value of clouds or “The Cloud” — I don’t know which — is real, permitting shared environments, data sources, services etc. among multiple people or communities and among the multiple platforms of a single individual. This is a rapidly moving capability and interface the full societal impact of which is probably unpredictable even to the most visionary among us but can be anticipating to be enormous and far reaching.

But for HPC, the utility of clouds in the future is, well, foggy. There are some sweet spots. Storage of data, larger than easily managed by a modest department, but smaller than some horrific size, is likely. The problem with ultra-large data sets is that they have to get moved. If they accrue slowly and are only lightly sampled, this can work. But if the entire data set has to be processed by local computing resources, then the intervening bandwidth provided by the internet simply may not be adequate.

On the computing side, there is an attraction to amortizing the cost and administration of a large array of computing resources across many users. Indeed, the accessibility of a system of very large scale that could not be acquired by any but a few institutions is a potential breakthrough in operational modality. But HPC reflects different forms of usage. The clouds can supply “throughput computing” and a significant percentage of the HPC workload is of this kind. Indeed, pools of resources including workstation farms across academic campuses and else where have been widely employed over decades.

But HPC has many computational challenges, single programs, that are tightly coupled and for which much of the programming challenge is performance tuning. Latencies have to be low, overheads even lower, and cost of information flow understood and stable. Clouds provide none of this in very large configurations. In some sense, this is their strength; successive requests are serviced by different configurations of available resources on demand. But for very large complex problems, they are not suitable, or at least less than optimal. Success of the cloud will require that we benefit from its advantages but not over-hype it and ultimately become disappointed.

People love milestones to mark progress and not just HPC people. In the last century two such captured the imagination of the world. One that I lived through was getting to the Moon with “one small step” provided Neil Armstrong in 1969. But another was a flight non-stop from New York to Paris by Charles Lindbergh in 1927 to claim the Raymond Orteig Prize. Today, the HPC community has self-defined our next milestone as exascale.

Over the last year, this objective has been codified by the US and internationally through meetings, plans, and programs. One international forum, the International Exascale Software Project (IESP), was completed after more than two years with its last of eight meetings in Kobe, Japan. The European Exascale Software Initiative (EESI) was also completed and is now succeeded by EESI-2. Plans are being considered in China, Japan, and Russia for their own path to exascale computing. In the US, the Department of Energy has launched at least three programs to develop a sufficient understanding and capability not just to get to exaflops, but to derive the right kind of exascale systems (hardware and software) and programming methodologies.

The Predictive Science Academic Alliance Program (PSAAP II) has just accepted proposals for exascale application development and system software. The co-design centers are also focused on the development of application algorithms and the systems upon which they are to run. The Modeling of Execution Model projects are exploring and quantifying the very principles upon which future exascale systems will be designed and operated. And the X-stack Program has just selected the teams that will develop next-generation system software and programming environments that will lead to exascale computing while providing nearer term utility as well.

But there is a difference between the milestones of 1927 and 1969 on the one hand, and that of the exascale, on the other. As extraordinary as Lindbergh’s historic accomplishment was, it was an end in itself. That cannot be the case for exascale computing. While our field has been guilty of stunt machines in the past, the cost and importance of achieving useful exascale capability, capacity, and application is too great to invest in merely claiming the first HPL exaflops Rmax run

And if some institution, agency, or nation does force such an artificial solution for a short-lived sense of glory, then surely the serious HPC community should mark this act with disdain. The future of HPC is the future of exascale but not merely such systems or benchmarks in and of themselves, but rather the scientific, medical, societal, and commercial breakthroughs that these systems will enable.

The Spirit of St Louis flew from New York to Paris. But it took a ship back to the US. It wouldn’t have made it if it had tried to do it in reverse. The head winds, which helped it fly east, would have impeded its progress west. The Spirit of Saint Louis now lives in the Smithsonian Air and Space Museum, the world’s most popular museum.

When viewing it from the 2nd floor, the discerning eye will notice a very peculiar thing; there is no front-looking window. Lindbergh could not see where he was going (although he did have a small periscope). From the side windows he could see where he was and guess what was coming next but he did not have the vision ahead.

HPC cannot afford to fly blind. We cannot just use our current position to assume we will make the right incremental progress towards our future destination. And we can’t just build an exascale computer to sit in a museum, even if it does run a benchmark. HPC is a tool for humanity to solve problems of importance when faced with so many critical challenges. No more stunt machines, please.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Natural Gas, Precision Agriculture, Neural Networks and More

December 6, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced computing technologies for the AI and exascale era. "Over th Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has now encompassed CPUs offered by the leading public cloud serv Read more…

By Doug Black

Medical Imaging Gets an AI Boost

December 3, 2019

AI technologies incorporated into diagnostic imaging tools have proven useful in eliminating confirmation bias, often outperforming human clinicians who may bring their own prejudices. Another issue slowing progress is t Read more…

By George Leopold

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

AI Needs Intelligent HPC infrastructure

Artificial Intelligence (AI) has revolutionized entire industries and enables humanity to solve some of the most daunting challenges. To accomplish this, it requires massive amounts of data from heterogeneous sources that is processed it new ways that differs significantly from HPC applications. Read more…

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science itself. At SC19, Steve Squyres’ opening keynote recounting th Read more…

By John Russell

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has n Read more…

By Doug Black

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science its Read more…

By John Russell

NSCI Update – Adapting to a Changing Landscape

December 2, 2019

It was November of 2017 when we last visited the topic of the National Strategic Computing Initiative (NSCI). As you will recall, the NSCI was started with an Executive Order (E.O. No. 13702), that was issued by President Obama in July of 2015 and was followed by a Strategic Plan that was released in July of 2016. The question for November of 2017... Read more…

By Alex R. Larzelere

Tsinghua University Racks Up Its Ninth Student Cluster Championship Win at SC19

November 27, 2019

Tsinghua University has done it again. At SC19 last week, the eight-time gold medal-winner team took home the top prize in the 2019 Student Cluster Competition Read more…

By Oliver Peckham

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

How the Gordon Bell Prize Winners Used Summit to Illuminate Transistors

November 22, 2019

At SC19, the Association for Computing Machinery (ACM) awarded the prestigious Gordon Bell Prize to the Swiss Federal Institute of Technology (ETH) Zurich. The Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This