HPC and the Spirit of St. Louis

By Thomas Sterling

June 20, 2012

Every year, as the International Supercomputing Conference in Germany approaches, our good friends here at HPCwire invite me to reflect on the trends of the past 12 months, not so much to provide a potentially tedious list of specific events, product deliveries, and TOP500 mantras but rather to convey a personal sense of what it all adds up to and possibly means for the future of HPC.

This year, to do so, is both easy and difficult. As a field, we are at an inflection point marked by significant progress and innovation in form and method, while at the same time we are confronted by uncertainty at a level that is at least uncomfortable for our system providers and possibly disruptive. There is certainly more contention about degree and direction of product and research investment, both within the US and internationally.

HPC has certainly entered a period of diversity far different than a decade ago, and that is not simply a function of the more than two orders of magnitude of Linpack performance in a time of Pax MPI. The easy part is to recite the buzz words of the year: “GPU”, “big data”, “clouds,” and “exascale.” If you are on one of these trains, then according to popular belief, you are on the fast track.

The mad dash to flops through the means of cramming as many ALUs as possible in the dense (and successful) form factor of a GPU, sometimes referred to as “accelerators,” has pushed passed the tipping point, with many, but not all major new installations incorporating these flops multipliers in their arsenal on the field of big iron.

Both NVIDIA and AMD are providing the punch in heterogeneity, although with vary different architectures. It’s actually interesting to watch NVIDIA on the wrong side of the PCI bus move ARM into their modules. AMD is moving their accelerator module into, or at least closer to, their multicore array. Choose your own benchmark (you actually should), but for some, the AMD strategy appears to be working, while the NVIDIA offering is clearly in the lead.

In the US, new big systems like Titan at Oak Ridge and Blue Waters at the University of Illinois are betting on this, and preparing to break through 10 petaflops based on Cray’s latest supercomputing offerings. Both China, with Tianhe-1A, and Japan, with TSUBAME 2, have taken a similar path, each with their own novel contributions.

But there are exceptions, even at the top end. Kei (K) in Kobe, the fastest machine at the time of this writing, has a more tightly integrated architecture provided by Fujitsu as it delivers about 10 petaflops and an array of IBM Blue Gene systems are banking on millions of lighter weight cores in a homogeneous system architecture to deliver an easier-to-program, and therefore more general class of computer, with lower power. (Note the GPUs are good on power as well.).

But programming remains a challenge, and if that is not hard enough, portability is even trickier, especially performance and scalability portability. There are on the order of 50,000-plus CUDA programmers but that does not mean the programming of large scalable systems incorporating GPUs is solved. OpenCL, a community-wide effort to provide an open programming methodology and one that addresses the problems somewhat more broadly, is in work and is attracting a growing body of users. OpenACC is an inchoate programming formalism with broader goals and an OpenMP-like touch and feel.

Many assert that we are looking at the system/programming family of the future. Others (and I’m among them) think it is a transitory phase, which will evolve into something as yet undefined. At least one heavy hitter, Intel, is betting on something all together different; their early MIC chip that defines a new manycore socket exhibiting homogeneity, reduced power, and generality. Clearly, the HPC community is not of a uniform opinion.

A very constructive movement that has gained momentum over the last year in the field of HPC is dubbed “big data.” In science and engineering more and more problems are challenged by the management, processing, and communication of potentially enormous amounts of associated data, whether observed by sensors or derived through simulation. The world’s largest telescopes, LIGO (Laser Interferometric Gravitational Observatory), and of course the LHC (Large Hadron Collider at CERN) are all examples of on-going experiments that generate constant streams of data that have to be dealt with. But biology and medical science also create an ever-growing body of data where cross correlations and data mining becomes an increasing challenge.

Storage capacity is only the beginning of the daunting problems confronting big data science. Communication bandwidth, latency, and reliability for data integrity, as well as power and cost are now and at an increasing pace continue to dominate big data science. Fortunately, unlike some other aspects of mostly flops-intense scientific computing, help will come from industry. This is because big data may generate big profits.

The needs of science in this realm are also manifest in the commercial space from large relational databases, through inventory and sales management, to social networks and search engines. These and other markets will drive technology advancement by the vendors that should have substantial impact on the science domain as well. But over-exuberance in our field is abundant and there are some well-intentioned practitioners in the big data arena who assert that this is THE problem in scientific computing. My message to them is: there are enough problems in HPC to go around.

Of course, according to some, the answer to the question of where to put all that data, or for that matter, where to process it (or any other kind of computing one might need to do) is obvious: it’s the cloud! Well maybe.

The value of clouds or “The Cloud” — I don’t know which — is real, permitting shared environments, data sources, services etc. among multiple people or communities and among the multiple platforms of a single individual. This is a rapidly moving capability and interface the full societal impact of which is probably unpredictable even to the most visionary among us but can be anticipating to be enormous and far reaching.

But for HPC, the utility of clouds in the future is, well, foggy. There are some sweet spots. Storage of data, larger than easily managed by a modest department, but smaller than some horrific size, is likely. The problem with ultra-large data sets is that they have to get moved. If they accrue slowly and are only lightly sampled, this can work. But if the entire data set has to be processed by local computing resources, then the intervening bandwidth provided by the internet simply may not be adequate.

On the computing side, there is an attraction to amortizing the cost and administration of a large array of computing resources across many users. Indeed, the accessibility of a system of very large scale that could not be acquired by any but a few institutions is a potential breakthrough in operational modality. But HPC reflects different forms of usage. The clouds can supply “throughput computing” and a significant percentage of the HPC workload is of this kind. Indeed, pools of resources including workstation farms across academic campuses and else where have been widely employed over decades.

But HPC has many computational challenges, single programs, that are tightly coupled and for which much of the programming challenge is performance tuning. Latencies have to be low, overheads even lower, and cost of information flow understood and stable. Clouds provide none of this in very large configurations. In some sense, this is their strength; successive requests are serviced by different configurations of available resources on demand. But for very large complex problems, they are not suitable, or at least less than optimal. Success of the cloud will require that we benefit from its advantages but not over-hype it and ultimately become disappointed.

People love milestones to mark progress and not just HPC people. In the last century two such captured the imagination of the world. One that I lived through was getting to the Moon with “one small step” provided Neil Armstrong in 1969. But another was a flight non-stop from New York to Paris by Charles Lindbergh in 1927 to claim the Raymond Orteig Prize. Today, the HPC community has self-defined our next milestone as exascale.

Over the last year, this objective has been codified by the US and internationally through meetings, plans, and programs. One international forum, the International Exascale Software Project (IESP), was completed after more than two years with its last of eight meetings in Kobe, Japan. The European Exascale Software Initiative (EESI) was also completed and is now succeeded by EESI-2. Plans are being considered in China, Japan, and Russia for their own path to exascale computing. In the US, the Department of Energy has launched at least three programs to develop a sufficient understanding and capability not just to get to exaflops, but to derive the right kind of exascale systems (hardware and software) and programming methodologies.

The Predictive Science Academic Alliance Program (PSAAP II) has just accepted proposals for exascale application development and system software. The co-design centers are also focused on the development of application algorithms and the systems upon which they are to run. The Modeling of Execution Model projects are exploring and quantifying the very principles upon which future exascale systems will be designed and operated. And the X-stack Program has just selected the teams that will develop next-generation system software and programming environments that will lead to exascale computing while providing nearer term utility as well.

But there is a difference between the milestones of 1927 and 1969 on the one hand, and that of the exascale, on the other. As extraordinary as Lindbergh’s historic accomplishment was, it was an end in itself. That cannot be the case for exascale computing. While our field has been guilty of stunt machines in the past, the cost and importance of achieving useful exascale capability, capacity, and application is too great to invest in merely claiming the first HPL exaflops Rmax run

And if some institution, agency, or nation does force such an artificial solution for a short-lived sense of glory, then surely the serious HPC community should mark this act with disdain. The future of HPC is the future of exascale but not merely such systems or benchmarks in and of themselves, but rather the scientific, medical, societal, and commercial breakthroughs that these systems will enable.

The Spirit of St Louis flew from New York to Paris. But it took a ship back to the US. It wouldn’t have made it if it had tried to do it in reverse. The head winds, which helped it fly east, would have impeded its progress west. The Spirit of Saint Louis now lives in the Smithsonian Air and Space Museum, the world’s most popular museum.

When viewing it from the 2nd floor, the discerning eye will notice a very peculiar thing; there is no front-looking window. Lindbergh could not see where he was going (although he did have a small periscope). From the side windows he could see where he was and guess what was coming next but he did not have the vision ahead.

HPC cannot afford to fly blind. We cannot just use our current position to assume we will make the right incremental progress towards our future destination. And we can’t just build an exascale computer to sit in a museum, even if it does run a benchmark. HPC is a tool for humanity to solve problems of importance when faced with so many critical challenges. No more stunt machines, please.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Officials, scientists and other stakeholders celebrated the new sy Read more…

By Staff report

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Indiana University Researchers Use Supercomputing to Model the State’s Largest Watershed

February 20, 2020

With water stressors on the rise, understanding and protecting water supplies is more important than ever. Now, a team of researchers from Indiana University has created a new climate change data portal to help Indianans Read more…

By Staff report

TACC – Supporting Portable, Reproducible, Computational Science with Containers

February 20, 2020

Researchers who use supercomputers for science typically don't limit themselves to one system. They move their projects to whatever resources are available, often using many different systems simultaneously, in their lab Read more…

By Aaron Dubrow

China Researchers Set Distance Record in Quantum Memory Entanglement

February 20, 2020

Efforts to develop the necessary capabilities for building a practical ‘quantum-based’ internet have been ongoing for years. One of the biggest challenges is being able to maintain and manage entanglement of remote q Read more…

By John Russell

AWS Solution Channel

Challenging the barriers to High Performance Computing in the Cloud

Cloud computing helps democratize High Performance Computing by placing powerful computational capabilities in the hands of more researchers, engineers, and organizations who may lack access to sufficient on-premises infrastructure. Read more…

IBM Accelerated Insights

Intelligent HPC – Keeping Hard Work at Bay(es)

Since the dawn of time, humans have looked for ways to make their lives easier. Over the centuries human ingenuity has given us inventions such as the wheel and simple machines – which help greatly with tasks that would otherwise be extremely laborious. Read more…

New Algorithm Allows PCs to Challenge HPC in Weather Forecasting

February 19, 2020

Accurate weather forecasting has, by and large, been situated squarely in the domain of high-performance computing – just this week, the UK announced a nearly $1.6 billion investment in the world’s largest supercompu Read more…

By Oliver Peckham

US to Triple Its Supercomputing Capacity for Weather and Climate with Two New Crays

February 20, 2020

The blizzard of news around the race for weather and climate supercomputing leadership continues. Just three days after the UK announced a £1.2 billion plan to build the world’s largest weather and climate supercomputer, the U.S. National Oceanic and Atmospheric Administration... Read more…

By Oliver Peckham

Japan’s AIST Benchmarks Intel Optane; Cites Benefit for HPC and AI

February 19, 2020

Last April Intel released its Optane Data Center Persistent Memory Module (DCPMM) – byte addressable nonvolatile memory – to increase main memory capacity a Read more…

By John Russell

UK Announces £1.2 Billion Weather and Climate Supercomputer

February 19, 2020

While the planet is heating up, so is the race for global leadership in weather and climate computing. In a bombshell announcement, the UK government revealed p Read more…

By Oliver Peckham

The Massive GPU Cloudburst Experiment Plays a Smaller, More Productive Encore

February 13, 2020

In November, researchers at the San Diego Supercomputer Center (SDSC) and the IceCube Particle Astrophysics Center (WIPAC) set out to break the internet – or Read more…

By Oliver Peckham

Eni to Retake Industry HPC Crown with Launch of HPC5

February 12, 2020

With the launch of its Dell-built HPC5 system, Italian energy company Eni regains its position atop the industrial supercomputing leaderboard. At 52-petaflops p Read more…

By Tiffany Trader

Trump Budget Proposal Again Slashes Science Spending

February 11, 2020

President Donald Trump’s FY2021 U.S. Budget, submitted to Congress this week, again slashes science spending. It’s a $4.8 trillion statement of priorities, Read more…

By John Russell

Policy: Republicans Eye Bigger Science Budgets; NSF Celebrates 70th, Names Idea Machine Winners

February 5, 2020

It’s a busy week for science policy. Yesterday, the National Science Foundation announced winners of its 2026 Idea Machine contest seeking directions for futu Read more…

By John Russell

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

51,000 Cloud GPUs Converge to Power Neutrino Discovery at the South Pole

November 22, 2019

At the dead center of the South Pole, thousands of sensors spanning a cubic kilometer are buried thousands of meters beneath the ice. The sensors are part of Ic Read more…

By Oliver Peckham

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed instances for storage workloads. The fourth-generation Azure D-series and E-series virtual machines previewed at the Rome launch in August are now generally available. Read more…

By Tiffany Trader

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This