An HPC Programming Model for the Exascale Age

By Christian Simmendinger, T-Systems Solutions for Research and Daniel Grünewald, Fraunhofer ITWM, CC-HPC

June 26, 2012

As the supercomputing faithful prepare for exascale computing, there is a great deal of talk about moving beyond the two-decades-old MPI programming model . The HPC programmers of tomorrow are going to have to write codes that are able to deal with systems hundreds of times larger than the top supercomputers of today, and the general feeling is that MPI, by itself, will not make that transition gracefully. One of the alternatives being offered is a PGAS model known as GASPI, which was the subject of an extended session at last week’s International Supercomputing Conference.

GASPI, which stands for Global Address Space Programming Interface, is, as the name suggests, a partitioned global address space (PGAS) API. The GASPI standard is focused on three key objectives: scalability, flexibility and fault tolerance. It follows a single program multiple data (SPMD) approach and offers a small, yet powerful API composed of synchronization primitives, synchronous and asynchronous collectives, fine grained control over one-sided read and write communication primitives, global atomics, passive receives, communication groups and communication queues.

Essentially it uses one-sided RDMA-driven communication in a PGAS environment. As such, GASPI aims to initiate a paradigm shift from bulk-synchronous two-sided communication patterns towards an asynchronous communication and execution model.

With today’s ever increasing number of processes, a transition from bulk-synchronous communication towards an asynchronous programming model seems to be inevitable. Elapsed time for bulk-synchronous communication potentially scales with the logarithm of the number of processes, whereas the work assigned to a single process potentially scales with a factor of 1/(number of processes).

Hence, the scalability of bulk-synchronous communication patterns appears to be limited at best. Despite recent efforts to support true asynchronous communication, the message passing standard of MPI to a large extent still focuses on two-sided semantics and bulk-synchronous communication.

At the same time, fault tolerance also becomes a larger issue as machines expand in size. On systems with large number of processes, all non-local communication should be prepared for a potential failure of one of the communication partners. In GASPI this is accomplished by providing a timeout value as an argument to all non-local communication calls and the possibility to check for the state of each of the communication partners. The model also allows for the dynamic substitution of a failed process.

GASPI does not enforce a specific memory model, like, for example, the symmetric distributed memory management of OpenSHMEM. Rather GASPI offers PGAS in the form of configurable RDMA pinned memory segments. Since an application can request several segments in GASPI symmetric, asymmetric or stack based memory management models can readily coexist.

With PGAS, every thread can asynchronously read and write the entire global memory of an application. On modern machines with RDMA engines, an asynchronous PGAS programming model appears as a natural extension and abstraction of available hardware functionality. For systems with DMA engines (such as tile architectures), this also holds true for a node-local level.

While the GASPI API readily can support the various communication patterns of MPI by means of an add-on library, the reverse is not true. GASPI for example supports RDMA access to arbitrarily distributed data, which allows the programmer a direct RDMA write access from a local send halo of an unstructured mesh into the corresponding remote receive halo.

The GASPI API has been designed to coexist with MPI and hence in principle provides the possibility to complement MPI with a partitioned global address space. We note however, that while such an approach provides an opportunity for increased scalability, fault–tolerant execution will not be possible due to the corresponding limitations of MPI.

GASPI inherits much of its design from the Global address space Programming Interface (GPI), which was developed in 2005 at the Competence Center for High Performance Computing (CC-HPC) at Fraunhofer ITWM. GPI is implemented as a low-latency communication library and is designed for scalable, real-time parallel applications running on cluster systems. It provides a PGAS API and includes communication primitives, environment run-time checks and synchronization primitives such as fast barriers or global atomic counters.

GPI communication is asynchronous, one-sided and, most importantly, does not interfere with the computation on the CPU. Minimal communication overhead can be realized by overlapping communication and computation. GPI also provides a simple, run-time system to handle large data sets, as well as dynamic and irregular applications that are I/O- and compute-intensive. As of today, there are production-quality implementations for x86 and IBM Cell/B.E architectures.

GPI has been used to implement and optimize CC-HPC industry applications like the Generalized Radon Transform (GRT) method in seismic imaging or the seismic work flow and visualization suite PSPRO. Today, GPI is installed on Tier 0 supercomputer sites in Europe, including the HLRS in Stuttgart and the Jülich Supercomputing Centre.

The GPI library has yielded some promising results in a number of situations. In particular, GPI outperforms MPI in significant low-level benchmarks. For process to process communication, GPI asynchronous one-sided communication, as opposed to both MPI one-sided communication and MPI bulk-synchronous two sided-communication, delivers full hardware bandwidth. As a function of message size, GPI reaches its peak performance much earlier than MPI.

A slightly more complex type of low-level benchmark is the two dimensional fast Fourier transformation on a distributed data set. We have compared two almost identical MPI and GPI implementations which feature the same communication pattern. Contrary to MPI, GPI was able to deliver near perfect scalability in a strong scaling setup.

GPI has also shown excellent scalability in a broad spectrum of typical real world HPC applications like the Computational Fluid Dynamics (TAU code from the DLR), or BQCD, a four dimensional nearest neighbor stencil algorithm. GPI has also been used in the implementation of fastest Unbalanced Tree Search (UTS) benchmark on the market.

Since many of the GASPI key objectives are shared by GPI, these results show the inherent potential of GASPI.

In 2010 the request for a standardization of the GPI interface emerged, which ultimately lead to the inception of the GASPI project in 2011. The work was funded by the German Ministry of Education and Science and included project partners Fraunhofer ITWM and SCAI, T-Systems SfR, TU Dresden, DLR, KIT, FZJ, DWD and Scapos.

The standard is currently being implemented in two flavors: a highly portable open source implementation based on GASNet and a commercial implementation aimed at ultimate performance. This latter implementation will be based on GPI. The TU Dresden, ZIH will provide profiling support for GASPI by means of extending the VAMPIR tool suite.

The GASPI project intends to drive the dissemination and visibility of the API by means of highly visible lighthouse projects in specific application domains, including CFD, turbo-machinery, weather and climate, oil and gas, molecular dynamics, as well as in the area of sparse and dense matrices. Amongst other implementations, the GASPI project will provide an asynchronous GASPI version of the Linpack benchmark.

There are a number of other projects that pursue similar goals to GASPI, the closest in spirit being OpenSHMEM. Ultimately the GASPI project aims at establishing a de-facto standard for an API for scalable, fault-tolerant and flexible communication in a partitioned global address Space. Whether that newly emerging standard will be called GASPI, however, remains to be seen.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This