An HPC Programming Model for the Exascale Age

By Christian Simmendinger, T-Systems Solutions for Research and Daniel Grünewald, Fraunhofer ITWM, CC-HPC

June 26, 2012

As the supercomputing faithful prepare for exascale computing, there is a great deal of talk about moving beyond the two-decades-old MPI programming model . The HPC programmers of tomorrow are going to have to write codes that are able to deal with systems hundreds of times larger than the top supercomputers of today, and the general feeling is that MPI, by itself, will not make that transition gracefully. One of the alternatives being offered is a PGAS model known as GASPI, which was the subject of an extended session at last week’s International Supercomputing Conference.

GASPI, which stands for Global Address Space Programming Interface, is, as the name suggests, a partitioned global address space (PGAS) API. The GASPI standard is focused on three key objectives: scalability, flexibility and fault tolerance. It follows a single program multiple data (SPMD) approach and offers a small, yet powerful API composed of synchronization primitives, synchronous and asynchronous collectives, fine grained control over one-sided read and write communication primitives, global atomics, passive receives, communication groups and communication queues.

Essentially it uses one-sided RDMA-driven communication in a PGAS environment. As such, GASPI aims to initiate a paradigm shift from bulk-synchronous two-sided communication patterns towards an asynchronous communication and execution model.

With today’s ever increasing number of processes, a transition from bulk-synchronous communication towards an asynchronous programming model seems to be inevitable. Elapsed time for bulk-synchronous communication potentially scales with the logarithm of the number of processes, whereas the work assigned to a single process potentially scales with a factor of 1/(number of processes).

Hence, the scalability of bulk-synchronous communication patterns appears to be limited at best. Despite recent efforts to support true asynchronous communication, the message passing standard of MPI to a large extent still focuses on two-sided semantics and bulk-synchronous communication.

At the same time, fault tolerance also becomes a larger issue as machines expand in size. On systems with large number of processes, all non-local communication should be prepared for a potential failure of one of the communication partners. In GASPI this is accomplished by providing a timeout value as an argument to all non-local communication calls and the possibility to check for the state of each of the communication partners. The model also allows for the dynamic substitution of a failed process.

GASPI does not enforce a specific memory model, like, for example, the symmetric distributed memory management of OpenSHMEM. Rather GASPI offers PGAS in the form of configurable RDMA pinned memory segments. Since an application can request several segments in GASPI symmetric, asymmetric or stack based memory management models can readily coexist.

With PGAS, every thread can asynchronously read and write the entire global memory of an application. On modern machines with RDMA engines, an asynchronous PGAS programming model appears as a natural extension and abstraction of available hardware functionality. For systems with DMA engines (such as tile architectures), this also holds true for a node-local level.

While the GASPI API readily can support the various communication patterns of MPI by means of an add-on library, the reverse is not true. GASPI for example supports RDMA access to arbitrarily distributed data, which allows the programmer a direct RDMA write access from a local send halo of an unstructured mesh into the corresponding remote receive halo.

The GASPI API has been designed to coexist with MPI and hence in principle provides the possibility to complement MPI with a partitioned global address space. We note however, that while such an approach provides an opportunity for increased scalability, fault–tolerant execution will not be possible due to the corresponding limitations of MPI.

GASPI inherits much of its design from the Global address space Programming Interface (GPI), which was developed in 2005 at the Competence Center for High Performance Computing (CC-HPC) at Fraunhofer ITWM. GPI is implemented as a low-latency communication library and is designed for scalable, real-time parallel applications running on cluster systems. It provides a PGAS API and includes communication primitives, environment run-time checks and synchronization primitives such as fast barriers or global atomic counters.

GPI communication is asynchronous, one-sided and, most importantly, does not interfere with the computation on the CPU. Minimal communication overhead can be realized by overlapping communication and computation. GPI also provides a simple, run-time system to handle large data sets, as well as dynamic and irregular applications that are I/O- and compute-intensive. As of today, there are production-quality implementations for x86 and IBM Cell/B.E architectures.

GPI has been used to implement and optimize CC-HPC industry applications like the Generalized Radon Transform (GRT) method in seismic imaging or the seismic work flow and visualization suite PSPRO. Today, GPI is installed on Tier 0 supercomputer sites in Europe, including the HLRS in Stuttgart and the Jülich Supercomputing Centre.

The GPI library has yielded some promising results in a number of situations. In particular, GPI outperforms MPI in significant low-level benchmarks. For process to process communication, GPI asynchronous one-sided communication, as opposed to both MPI one-sided communication and MPI bulk-synchronous two sided-communication, delivers full hardware bandwidth. As a function of message size, GPI reaches its peak performance much earlier than MPI.

A slightly more complex type of low-level benchmark is the two dimensional fast Fourier transformation on a distributed data set. We have compared two almost identical MPI and GPI implementations which feature the same communication pattern. Contrary to MPI, GPI was able to deliver near perfect scalability in a strong scaling setup.

GPI has also shown excellent scalability in a broad spectrum of typical real world HPC applications like the Computational Fluid Dynamics (TAU code from the DLR), or BQCD, a four dimensional nearest neighbor stencil algorithm. GPI has also been used in the implementation of fastest Unbalanced Tree Search (UTS) benchmark on the market.

Since many of the GASPI key objectives are shared by GPI, these results show the inherent potential of GASPI.

In 2010 the request for a standardization of the GPI interface emerged, which ultimately lead to the inception of the GASPI project in 2011. The work was funded by the German Ministry of Education and Science and included project partners Fraunhofer ITWM and SCAI, T-Systems SfR, TU Dresden, DLR, KIT, FZJ, DWD and Scapos.

The standard is currently being implemented in two flavors: a highly portable open source implementation based on GASNet and a commercial implementation aimed at ultimate performance. This latter implementation will be based on GPI. The TU Dresden, ZIH will provide profiling support for GASPI by means of extending the VAMPIR tool suite.

The GASPI project intends to drive the dissemination and visibility of the API by means of highly visible lighthouse projects in specific application domains, including CFD, turbo-machinery, weather and climate, oil and gas, molecular dynamics, as well as in the area of sparse and dense matrices. Amongst other implementations, the GASPI project will provide an asynchronous GASPI version of the Linpack benchmark.

There are a number of other projects that pursue similar goals to GASPI, the closest in spirit being OpenSHMEM. Ultimately the GASPI project aims at establishing a de-facto standard for an API for scalable, fault-tolerant and flexible communication in a partitioned global address Space. Whether that newly emerging standard will be called GASPI, however, remains to be seen.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This